# How to Simplify Complicated Combination and Permutation Questions on the GMAT

When test-takers first learn how to tackle combination and permutation questions, there’s typically a moment of euphoria when the proper approach really clicks.

If, for example, there are 10 people in a class, and you wish to find the number of ways you can form a cabinet consisting of a president, a vice president, and a treasurer, all you need to do is recognize that if you have 10 options for the president, you’ll have 9 left for the vice president, and 8 remaining for the treasurer, and the answer is 10*9*8. Easy, right?

But on the GMAT, as in life, anything that seems too good to be true probably is. An easy question can be tackled with the type of mechanical thinking illustrated above. A harder question will require a more sophisticated approach in which we consider disparate scenarios and perform calculations for each.

Take this question, for example:

Of the three-digit positive integers whose three digits are all different and nonzero, how many are odd integers greater than 700?

A) 84
B) 91
C) 100
D) 105
E) 243

It’s natural to see this problem and think, “All I have to do is reason out how many options I have for each digit. So for the hundreds digit, I have 3 options (7, 8, or 9); the tens digit has to be different from the hundreds digit, and it must be non-zero, so I’ll have 8 options here; then the last digit has to be odd, so…”

Here’s where the trouble starts. The number of eligible numbers in the 700’s will not be the same as the number of eligible numbers in the 800’s -if the digits must all be different, then a number in the 700’s can’t end in 7, but a number in the 800’s could. So, we need to break this problem into separate cases:

First Case: Numbers in the 700’s
If we’re dealing with numbers in the 700’s, then we’re calculating how many ways we can select a tens digit and a units digit. 7___ ___.

Let’s start with the units digit. Well, we know that this number needs to be odd. And we know that it must be different from the hundreds and the tens digits. This leaves us the following options, as we’ve already used 7 for the hundreds digit: 1, 3, 5, 9. So there are 4 options remaining for the units digit.

Now the tens digit must be a non-zero number that’s different from the hundreds and units digit. There are 9 non-zero digits. We’re using one of those for the hundreds place and one of those for the units place, leaving us 7 options remaining for the tens digit. If there are 4 ways we can select the units digit and 7 ways we can select the tens digit, there are 4*7 = 28 options in the 700’s.

Second Case: Numbers in the 800’s
Same logic: 8 ___ ___. Again, this number must be odd, but now we have 5 options for the units digit, as every odd number will obviously be different from the hundreds digit, which is even (1, 3, 5, 7, or 9). The tens digit logic is the same – 9 non-zero digits total, but it must be different from the hundreds and the units digit, leaving us 7 options remaining. If there are 5 ways we can select the units digit and 7 ways we can select the tens digit, there are 5*7 = 35 options in the 800’s.

Third Case: Numbers in the 900’s
This calculation will be identical to the 700’s scenario: 9___ ___. For the units digit, we want an odd number that is different from the hundreds digit, giving us (1, 3, 5, 7), or 4 options. We’ll have 7 options again for the tens digit, for the same reasons that we’ll have 7 options for the tens digit in our other cases. If there are 4 ways we can select the units digit and 7 ways we can select the tens digit, then there are 4*7 = 28 options in the 900’s.

To summarize, there are 28 options in the 700’s, 35 options in the 800’s, and 28 options in the 900’s. 28 + 35 + 28 = 91. Therefore, B is the correct answer.

Takeaway: for a simpler permutation question, it’s fine to simply set up your slots and multiply. For a more complicated problem, we’ll need to work case-by-case, bearing in mind that each individual case is, on its own, actually not nearly as hard as it looks, sort of like the GMAT itself.

Plan on taking the GMAT soon? We havestarting all the time. And be sure to follow us on FacebookYouTubeGoogle+ and Twitter!

By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.

# GMAT Math Help: Understanding and Solving Combinatorics Problems

Students who are taking the GMAT are going to encounter combinatorics problems. If you are a little rusty on your math topics, you may be asking, “What is combinatorics?” Combinatorics has to do with counting and evaluating the possibilities within a scenario that involve various amounts of people or things. Learn more about GMAT combinatorics questions and how to arrive at the right answers to be better prepared for the test.

Permutations
Picture a certain number of people or objects. Permutations are the possible arrangements that those people or objects can be in. One of the things you have to decide when looking at combinatorics problems is whether order is an important factor. If order is important in a problem, then the answer has to do with permutations. If order is not important in a problem, then the answer deals with combinations.

For example, say you line up five postcards from different cities on a tabletop. You may wonder how many different orders you can put these postcards in. Another way to say that would be, “How many different permutations can I make with these five postcards?” To figure out this problem, you would need the help of an equation: 5! = (5) (4) (3) (2) (1) = 120. The exclamation point in the formula is a symbol that means “factorial.”

Combinations
When working on combinatorics questions that deal with combinations, the order/arrangement of items is not important. For example, say that you have eight books and you want to know how many ways you can group three of those books on a library shelf. You could plug numbers into the three places in this formula to figure out the answer: (8) (7) (6) = 336 ways. This is the slot method of solving a combination problem.

Combinations With a Large Amount of Numbers
You will quickly find yourself needing combinatorics help if you try to count up a lot of numbers in one combination problem on the GMAT. Furthermore, you’ll use a lot of valuable test time with this counting method. Knowing the formula for combinations can help you to find the solution to a problem in a much shorter amount of time. The formula is nCr = n!/r!(n-r)! Here, n is the total number of options, r is the number of options chosen, and ! is the symbol for factorial.

Preparing for Applied Combinatorics Questions on the GMAT
One of the most effective ways of preparing for applied combinatorics questions is to take practice tests and review the various steps of problems. You want to get into the habit of approaching a problem by asking yourself whether order is a factor in a problem. This will help you determine whether a problem deals with permutations or combinations. Then, you can start to attack a problem from the right angle.

In addition, it’s important to time yourself when taking a practice Quantitative test. Though there are not many of these problems on the test, you have to get into the habit of spending only a certain amount of minutes on each problem so you don’t run out of test time before finishing.

We have a program of study at Veritas Prep that prepares you for questions on combinatorics as well as all of the other problems in the Quantitative section. We instruct you on how to approach test questions instead of just coaching you on how to memorize facts. Pair up with one of our skilled instructors at Veritas Prep and you will be studying with someone who scored in the 99th percentile on the GMAT. We believe that in order to perform at your best on the GMAT, you have to learn from a first-rate instructor! Our instructors can work through a combinatorics tutorial with you to determine what your strengths and weaknesses are in this branch of math. Then, we give you strategies that help you to improve.

For your convenience, we offer both in-person and online GMAT prep courses. We recognize that professionals in the business world have busy schedules, so we provide several study options to fit your life. When it comes to the topic of combinatorics, GMAT tips, instruction, and encouragement, we are your test prep experts. Contact us today and let us know how we can help you achieve your top GMAT score!

Want to learn more about our GMAT prep courses and how you can get a competitive edge when focusing your GMAT studies? Attend one of our upcoming free Live-Online GMAT Strategy Sessions. And be sure to follow us on FacebookYouTubeGoogle+ and Twitter!