GMAT Tip of the Week: Death, Taxes, and the GMAT Items You Know For Certain

GMAT Tip of the WeekHere on April 15, it’s a good occasion to remember the Benjamin Franklin quote: “In this world nothing can be said to be certain, except death and taxes.” Franklin, of course, never took the GMAT (which didn’t become a thing until a little ways after his own death, which he accurately predicted above). But if he did, he’d have plenty to add to that quote.

On the GMAT, several things are certain. Here’s a list of items you will certainly see on the GMAT, as you attempt to raise your score and therefore your potential income, thereby raising your future tax bills in Franklin’s honor:

Integrated Reasoning
You will struggle with pacing on the Integrated Reasoning section. 12 prompts in 30 minutes (with multiple problems per prompt) is an extremely aggressive pace and very few people finish comfortably. Be willing to guess on a problem that you know could sap your time: not only will that help you finish the section and protect your score, it will also help save your stamina and energy for the all-important Quant Section to follow.

Word Problems
On the Quantitative Section, you will certainly see at least one Work/Rate problem, one Weighted Average problem, and one Min/Max problem. This is good news! Word problems reward repetition and preparation – if you’ve put in the work, there should be no surprises.

Level of Difficulty
If you’re scoring above average on either the Quant or Verbal sections, you will see at least one problem markedly below your ability level. Because each section contains several unscored, experimental problems, and those problems are delivered randomly, probability dictates that every 700+ scorer will see at least one problem designed for the 200-500 crowd (and probably more than that). Do not try to read in to your performance based on the difficulty level of any one problem! It’s easy to fear that such a problem was delivered to you because you’re struggling, but the much more logical explanation is that it was either random or difficult-but-sneakily-so, so stay confident and move on.

Data Sufficiency
You will see at least one Data Sufficiency problem that seems way too easy to be true. And it’s probably not true: make sure that you think critically any time the testmaker is directly baiting you into a particular answer.

Sentence Correction
You will have to pick an answer that you don’t like, that doesn’t catch the ear the way you’d write or say it. Make sure that you prioritize the major errors that you know you can routinely catch and correct, and not let the GMAT bait you into a decision you’re just not qualified to make.

Reading Comprehension

You will see a passage that takes you a few re-reads to even get your mind to process it. Remember to be question-driven and not passage-driven – get enough out of the passage to know where to look when they ask you a specific question, but don’t worry about becoming a subject-matter expert on the topic. GMAT passages are designed to be difficult to read (particularly toward the end of a long test), so know that your competitive advantage is that you’ll be more efficient than your competition.

Critical Reasoning
You will have the opportunity to make quick work of several Critical Reasoning problems if you notice the tiny gaps in logic that each argument provides, and if you’re able to notice the subtle-but-significant words that make conclusions extra specific (and therefore harder to prove).

Few things are certain in life, but as you approach the GMAT there are plenty of certainties that you can prepare for so that you eliminate surprises and proceed throughout your test day confidently. On this Tax Day, take inventory of the things you know to be certain about the GMAT so that your test day isn’t so taxing.

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTubeGoogle+ and Twitter!

By Brian Galvin.

What Makes GMAT Quant Questions So Hard?

Quarter Wit, Quarter WisdomWe know that the essentials of the GMAT Quant section are pretty simple: advanced topics such as derivatives, complex numbers, matrices and trigonometry are not included, while fundamentals we all learned from our high school math books are included. So it would be natural to think that the GMAT Quant section should not pose much of a problem for most test-takers (especially for engineering students, who have actually covered far more advanced math during their past studies).

Hence, it often comes as a shock when many test-takers, including engineering students, receive a dismal Quant score on the first practice test they take. Of course, with practice, they usually wise up to the treachery of the GMAT, but until then, the Quant section is responsible for many a nightmare!

Today, let’s see what kind of treachery we are talking about – problems like this make some people laugh out loud and others pull at their hair!

Is the product pqr divisible by 12?
Statement 1: p is a multiple of 3
Statement 2: q is a multiple of 4

This seems like an easy C (Statements 1 and 2 together are sufficient, but alone are not sufficient), doesn’t it? P is a multiple of 3 and q is a multiple of 4, so together, p*q would be a multiple of 3*4 = 12. If p * q is already a multiple of 12, then obviously it would seem that p*q*r would be a multiple of 12, too.

But here is the catch – where is it mentioned that r must be an integer? Just because p and q are integers (multiples of 3 and 4 respectively), it does not imply that r must also be an integer.

If r is an integer, then sure, p*q*r will be divisible by 12. Imagine, however, that p = 3, q = 4 and r = 1/12. Now the product p*q*r = 3*4*(1/12) = 1. 1 is not divisible by 12, so in this case, pqr is not divisible by 12. Hence, both statements together are not sufficient to answer the question, and our answer is in fact E!

This question is very basic, but it still tricks us because we want to assume that p, q and r are clean integer values.

Along these same lines, let’s try the another one:

If 10^a * 3^b * 5^c = 450^n, what is the value of c?
Statement 1: a is 1.
Statement 2:  b is 2.

The first thing most of us will do here is split 450 into its prime factors:

450 = 2 * 3^2 * 5^2

450^n = 2^n * 3^2n * 5^2n

And do the same thing with the left side of the equation:

10^a * 3^b * 5^c = 2^a * 3^b * 5^(a+c)

Bringing the given equation back, we get:

2^a * 3^b * 5^(a+c) = 2^n * 3^2n * 5^2n

Statement 1: a is 1.

Equating the power of 2 on both sides, we see that a = n = 1.

a + c = 2n (equating the power of 5 on both sides)

1 + c = 2

c = 1

Statement 2:  b is 2.

Equating the power of 3 on both sides, we see that b = 2n = 2, so n = 1.

If n = 1, a = 1 by equating the powers of 2 on both sides.

a + c = 2n (equating the power of 5 on both sides)

1 + c = 2

c = 1

So it seems that both statements are separately sufficient. But hold on – again, the variables here don’t need to be cleanly fitting integers. The variables could pan out the way discussed in our first problem, or very differently.

Say, n = 1. When Statement 1 gives you that a = 1, you get 10^1 * 3^b * 5^c = 450^1.

3^b * 5^c = 45

Now note that value of c depends on the value of b, which needn’t be 2.

If b  = 3, then 3^3 * 5^c = 45.

5^c = 45/27

C will take a non-integer value here.

c = .3174

The question does not mention that all variables are integers, therefore there are infinite values that c can take depending on the values of b. Similarly, we can see that Statement 2 alone is also not sufficient. Using both statements together, you will get:

2^a * 3^b * 5^(a+c) = 450^n

2^1 * 3^2 * 5^(1 + c) = 450^n

5^(1 + c) = 450^n/18

By now, you’ve probably realized that depending on the value of n, c can take infinite different values. If n = 1, c = 1. If n = 2, c = 4.8. And so on… We don’t need to actually find these values – it is enough to know that different values of n will give different values of c.

With this in mind, we can see that both statements together are not sufficient, and therefore our answer must be E.

Hopefully, in future, this sneaky trick will not get you!

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on FacebookYouTubeGoogle+, and Twitter!

Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the GMAT for Veritas Prep and regularly participates in content development projects such as this blog!

2 Tips to Make GMAT Remainder Questions Easy

stressed-studentSeveral months ago, I wrote an article about remaindersBecause this concept shows up so often on the GMAT, I thought it would be useful to revisit the topic. At times, it will be helpful to know the kind of terminology we’re taught in grade school, while at other times, we’ll simply want to select simple numbers that satisfy the parameters of a Data Sufficiency statement.

So let’s explore each of these scenarios in a little more detail. A simple example can illustrate the terminology: if we divide 7 by 4, we’ll have 7/4 = 1 + ¾.

7, the term we’re dividing by something else, is called the dividend. 4, which is doing the dividing, is called the divisor. 1, the whole number component of the mixed fraction, is the quotient. And 3 is the remainder. This probably feels familiar.

In the abstract, the equation is: Dividend/Divisor = Quotient + Remainder/Divisor. If we multiply through by the Divisor, we get: Dividend = Quotient*Divisor + Remainder.

Simply knowing this terminology will be sufficient to answer the following official question:

When N is divided by T, the quotient is S and the remainder is V. Which of the following expressions is equal to N? 

A) ST
B) S + V
C) ST + V
D) T(S+V)
E) T(S – V) 

In this problem, N – which is getting divided by something else – is our dividend, T is the divisor, S is the quotient, and V is the remainder. Plugging the variables into our equation of Dividend = Quotient*Divisor + Remainder, we get N = ST + V… and we’re done! The answer is C.

(Note that if you forgot the equation, you could also pick simple numbers to solve this problem. Say N = 7 and T = 3. 7/3 = 2 + 1/3.  The Quotient is 2, and the remainder is 1, so V = 1. Now, if we plug in 3 for T, 2 for S, and 1 for V, we’ll want an N of 7. Answer choice C will give us an N of 7, 2*3 + 1 = 7, so this is correct.)

When we need to generate a list of potential values to test in a data sufficiency question, often a statement will give us information about the dividend in terms of the divisor and the remainder.

Take the following example: when x is divided by 5, the remainder is 4. Here, the dividend is x, the divisor is 5, and the remainder is 4. We don’t know the quotient, so we’ll just call it q. In equation form, it will look like this: x = 5q + 4. Now we can generate values for x by picking values for q, bearing in mind that the quotient must be a non-negative integer.

If q = 0, x = 4. If q = 1, x = 9. If q=2, x = 14. Notice the pattern in our x values: x = 4 or 9 or 14… In essence, the first allowable value of x is the remainder. Afterwards, we’re simply adding the divisor, 5, over and over. This is a handy shortcut to use in complicated data sufficiency problems, such as the following:

If x and y are integers, what is the remainder when x^2 + y^2 is divided by 5?

1) When x – y is divided by 5, the remainder is 1
2) When x + y is divided by 5, the remainder is 2

In this problem, Statement 1 gives us potential values for x – y. If we begin with the remainder (1) and continually add the divisor (5), we know that x – y = 1 or 6 or 11, etc. If x – y = 1, we can say that x = 1 and y = 0. In this case, x^2 + y^2 = 1 + 0 = 1, and the remainder when 1 is divided by 5 is 1. If x – y = 6, then we can say that x = 7 and y = 1. Now x^2 + y^2 = 49 + 1 = 50, and the remainder when 50 is divided by 5 is 0. Because the remainder changes from one scenario to another, Statement 1 is not sufficient alone.

Statement 2 gives us potential values for x + y. If we begin with the remainder (2) and continually add the divisor (5), we know that x + y = 2 or 7 or 12, etc. If x + y = 2, we can say that x = 1 and y = 1. In this case, x^2 + y^2 = 1 + 1 = 2, and the remainder when 2 is divided by 5 is 2. If x + y = 7, then we can say that x = 7 and y = 0. Now x^2 + y^2 = 49 + 0 = 49, and the remainder when 49 is divided by 5 is 4. Because the remainder changes from one scenario to another, Statement 2 is also not sufficient alone.

Now test them together – simply select one scenario from Statement 1 and one scenario from Statement 2 and see what happens. Say x – y = 1 and x + y = 7. Adding these equations, we get 2x = 8, or x = 4. If x = 4, y = 3. Now x^2 + y^2 = 16 + 9 = 25, and the remainder when 25 is divided by 5 is 0.

We need to see if this will ever change, so try another scenario. Say x – y = 6 and x + y = 12. Adding the equations, we get 2x = 18, or x = 9. If x =  9, y = 3, and x^2 + y^2 = 81 + 9 = 90. The remainder when 90 is divided by 5 is, again, 0. No matter what we select, this will be the case – we know definitively that the remainder is 0. Together the statements are sufficient, so the answer is C.

Takeaway: You’re virtually guaranteed to see remainder questions on the GMAT, so you want to make sure you have this concept mastered. First, make sure you feel comfortable with the following equation: Dividend = Divisor*Quotient + Remainder. Second, if you need to select values, you can simply start with the remainder and then add the divisor over and over again. If you internalize these two ideas, remainder questions will become considerably less daunting.

*GMATPrep questions courtesy of the Graduate Management Admissions Council.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on FacebookYouTubeGoogle+ and Twitter!

By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can read more articles by him here.

GMAT Tip of the Week: The Biggie Smalls Sufficiency Strategy

GMAT Tip of the WeekIf it’s March, it must be Hip Hop Month in the Veritas Prep GMAT Tip of the Week space, where this week we’ll tackle the most notorious GMAT question type – Data Sufficiency – with some help from hip hop’s most notorious rapper – Biggie Smalls.

Biggie’s lyrics – and his name itself – provide a terrific template for you to use when picking numbers to test whether a statement is sufficient or not. So let’s begin with a classic lyric from “Big Poppa” – you may think Big is describing how he’s approach a young lady in a nightclub, but if you listen closely he’s actually talking directly to you as you attack Data Sufficiency:

“Ask you what your interests are, who you be with. Things to make you smile; what numbers to dial.”

“What numbers to dial” tends to be one of the biggest challenges that face GMAT examinees, so let’s examine the strategies that can take your score from “it was all a dream” to sipping champagne when you’re thirsty.

Biggie Smalls Strategy #1: Biggie Smalls
Consider this Data Sufficiency problem:

What is the value of integer z?

1) z is the remainder when positive integer y is divided by positive integer (y – 1)

2) y is not a prime number

Statistically, more than 50% of respondents in the Veritas Prep practice tests incorrectly choose answer choice A, that Statement 1 alone is sufficient but Statement 2 alone is not sufficient. Why? Because they’re not quite sure “what numbers to dial.” People know that they need to test numbers – Statement 1 is very abstract and difficult to visualize with variables – so they test a few numbers that come to mind:

If y = 5, y – 1 = 4, and the problem is then 5/4 which leads to 1, remainder 1.

If y = 10, y – 1 = 9, so the problem is then 10/9 which also leads to 1, remainder 1.

If they keep choosing random integers that happen to come to mind, they’ll see that pattern hold – the answer is ALMOST always 1 remainder 1, with exactly one exception. If y = 2, then y – 1 = 1, and 2 divided by 1 is 2 with no remainder. This is the only case where z does not equal 1, but that one exception shows that Statement 1 is not sufficient.

The question then becomes, “If there’s only one exception, how the heck does the GMAT expect me to stumble on that needle in a haystack?” And the answer comes directly from the Notorious BIG himself:

You need to test “Biggie Smalls,” meaning that you need to test the biggest number they’ll let you use (here it can be infinite, so just test a couple of really big numbers like 1,000 and 1,000,000) and you need to test the smallest number they’ll let you use. Here, that’s y = 2 and y – 1 = 1, since y – 1 must be a positive integer, and the smallest of those is 1.

The problem is that people tend to simply test numbers that come to mind (again, over half of all respondents think that Statement 1 is sufficient, which means that they very likely never considered the pairing of 2 and 1) and don’t push the limits. Data Sufficiency tends to play to the edge cases – if you get a statement like 5 < x < 12, you can’t just test 8, 9, and 10 – you’ll want to consider 5.00001 and 11.9999. When the GMAT gives you a range, use the entire range – and a good way to remind yourself of that is to just remember “Biggie Smalls.”

Biggie Smalls Strategy #2:  Juicy
In arguably his most famous song, “Juicy”, Biggie spits the line, “Damn right I like the life I live, because I went from negative to positive and it’s all…it’s all good (and if you don’t know, now you know).”

There, of course, Biggie is reminding you that you have to consider both negative and positive numbers in Data Sufficiency problems. Consider this example:

a, b, c, and d are consecutive integers such that the product abcd = 5,040. What is the value of d?

1) d is prime

2) a>b>c>d

This problem exemplifies why keeping Big’s words top of mind is so crucial – difficult problems will often “satisfy your intellect” with interesting math…and then beat you with negative/positive ideology. Here it takes some time to factor 5040 into the consecutive integers 7 x 8 x 9 x 10, but once you do, you can see that Statement 1 is sufficient: 7 is the only prime number.

But then when you carry that over to Statement 2, it’s very, very easy to see 7, 8, 9, and 10 as the only choices and again see that d = 7. But wait! If d doesn’t have to be prime – primes can only be positive – that allows for a possibility of negative numbers: -10, -9, -8, and -7. In that case, d could be either 7 or -10, so Statement 2 is actually not sufficient.

So heed Biggie’s logic: you’ll like the life you live much better if you go from negative to positive (or in most cases, vice versa since your mind usually thinks positive first), and if you don’t know (is that sufficient?) now, after checking for both positive and negative and for the biggest and smallest numbers they’ll let you pick, now you know.

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTubeGoogle+ and Twitter!

By Brian Galvin.

Quarter Wit, Quarter Wisdom: Ratios in GMAT Data Sufficiency

Quarter Wit, Quarter WisdomWe know that ratios are the building blocks for a lot of other concepts such as time/speed, work/rate and mixtures. As such, we spend a lot of time getting comfortable with understanding and manipulating ratios, so the GMAT questions that test ratios seem simple enough, but not always! Just like questions from all other test areas, questions on ratios can be tricky too, especially when they are formatted as Data Sufficiency questions.

Let’s look at two cases today: when a little bit of data is sufficient, and when a lot of data is insufficient.

When a little bit of data is sufficient!
Three brothers shared all the proceeds from the sale of their inherited property. If the eldest brother received exactly 5/8 of the total proceeds, how much money did the youngest brother (who received the smallest share) receive from the sale?

Statement 1: The youngest brother received exactly 1/5 the amount received by the middle brother.

Statement 2: The middle brother received exactly half of the two million dollars received by the eldest brother.

First impressions on reading this question? The question stem gives the fraction of money received by one brother. Statement 1 gives the fraction of money received by the youngest brother relative to the amount received by the middle brother. Statement 2 gives the fraction of money received by the middle brother relative to the eldest brother and an actual amount. It seems like the three of these together give us all the information we need. Let’s dig deeper now.

From the Question stem:

Eldest brother’s share = (5/8) of Total

Statement 1: Youngest Brother’s share = (1/5) * Middle brother’s share

We don’t have any actual number – all the information is in fraction/ratio form. Without an actual value, we cannot find the amount of money received by the youngest brother, therefore, Statement 1 alone is not sufficient.

Statement 2: Middle brother’s share = (1/2) * Eldest brother’s share, and the eldest brother’s share = 2 million dollars

Middle brother’s share = (1/2) * 2 million dollars = 1 million dollars

Now, we might be tempted to jump to Statement 1 where the relation between youngest brother’s share and middle brother’s share is given, but hold on: we don’t need that information. We know from the question stem that the eldest brother’s share is (5/8) of the total share.

So 2 million = (5/8) of the total share, therefore the total share = 3.2 million dollars.

We already know the share of the eldest and middle brothers, so we can subtract their shares out of the total and get the share of the youngest brother.

Youngest brother’s share = 3.2 million – 2 million – 1 million = 0.2 million dollars

Statement 2 alone is sufficient, therefore, the answer is B.

When a lot of data is insufficient!
A department manager distributed a number of books, calendars, and diaries among the staff in the department, with each staff member receiving x books, y calendars, and z diaries. How many staff members were in the department?

Statement 1: The numbers of books, calendars, and diaries that each staff member received were in the ratio 2:3:4, respectively.

Statement 2: The manager distributed a total of 18 books, 27 calendars, and 36 diaries.

First impressions on reading this question? The question stem tells us that each staff member received the same number of books, calendars, and diaries. Statement 1 gives us the ratio of books, calendars and diaries. Statement 2 gives us the actual numbers. It certainly seems that we should be able to obtain the answer. Let’s find out:

Looking at the question stem, Staff Member 1 recieved x books, y calendars, and z diaries, Staff Member 2 recieved x books, y calendars, and z diaries… and so on until Staff Member n (who also recieves x books, y calendars, and z diaries).

With this in mind, the total number of books = nx, the total number of calendars = ny, and the total number of diaries = nz.

Question: What is n?

Statement 1 tells us that x:y:z = 2:3:4. This means the values of x, y and z can be:

2, 3, and 4,

or 4, 6, and 8,

or 6, 9, and 12,

or any other values in the ratio 2:3:4.

They needn’t necessarily be 2, 3 and 4, they just need the required ratio of 2:3:4.

Obviously, n can be anything here, therefore, Statement 1 alone is not sufficient.

Statement 2 tell us that nx = 18, ny = 27, and nz = 36.

Now we know the actual values of nx, ny and nz, but we still don’t know the values of x, y, z and n.

They could be

2, 3, 4 and 9

or 6, 9, 12 and 3

Therefore, Statement 2 alone is also not sufficient.

Considering both statements together, note that Statement 2 tells us that nx:ny:nz = 18:27:36 = 2:3:4 (they had 9 as a common factor).

Since n is a common factor on left side, x:y:z = 2:3:4 (ratios are best expressed in the lowest form).

This is a case of what we call “we already knew that” – information given in Statement 1 is already a part of Statement 2, so it is not possible that Statement 2 alone is not sufficient but that together Statement 1 and 2 are. Hence, both statements together are not sufficient, and our answer must be E.

A question that arises often here is, “Why can’t we say that the number of staff members must be 9?”

This is because the ratio of 2:3:4 is same as the ratio of 6:9:12, which is same as 18:27:36 (when you multiply each number of a ratio by the same number, the ratio remains unchanged).

If 18 books, 27 calendars, and 36 diaries are distributed in the ratio 2:3:4, we could give them all to one person, or to 3 people (giving them each 6 books, 9 calendars and 12 diaries), or to 9 people (giving them each 2 books, 3 calendars and 4 diaries).

When we see 18, 27 and 36, what comes to mind is that the number of people could have been 9, which would mean that the department manager distributed 2 books, 3 calendars and 4 diaries to each person. But we know that 9 is divisible by 3, which should remind us that the number of people could also be 3, which would mean that the manager distributed 6 books, 9 calendars and 12 diaries to each person. As such, we still don’t know how many staff members there are, and our answer remians E.

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on FacebookYouTubeGoogle+, and Twitter!

Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the GMAT for Veritas Prep and regularly participates in content development projects such as this blog!

GMAT Tip of the Week: Your MLK Study Challenge (Remove Your Biases)

GMAT Tip of the WeekAs we celebrate Martin Luther King, Jr. this weekend, you may take some of your free time to study for the GMAT. And if you do, make sure to heed the lessons of Dr. King, particularly as you study Data Sufficiency.

If Dr. King were alive today, he would certainly be proud of the legislation he inspired to end much of the explicit bias – you can’t eat here, vote there, etc. – that was part of the American legal code until the 1960s. But he would undoubtedly be dismayed by the implicit bias that still runs rampant across society.

This implicit bias is harder to detect and even harder to “fix.” It’s the kind of bias that, for example, the movie Freaknomics shows; often when the name at the top of a resume connotes some sort of stereotype, it subconsciously colors the way that the reader of that resume processes the rest of the information on it.

While that kind of subconscious bias is a topic for a different blog to cover, it has an incredible degree of relevance to the way that you attack GMAT Data Sufficiency problems. If you’re serious about studying for the GMAT, you’ll probably have long enacted your own versions of the Voting Rights Act and Civil Rights Act well before you get to test day – that is to say, you’ll have figured out how to eliminate the kind of explicit bias that comes from reading a question like:

If y is an odd integer and the product of x and y equals 222, what is the value of x?

1) x > 0

2) y is a 3 digit number

Here, you’ll likely see very quickly that Statement 1 is not sufficient, and come back to Statement 2 with fresh eyes. You don’t know that x is positive, so you’ll quickly see that y could be 111 and x could be 2, or that y could be -111 and x could be -2, so Statement 2 is clearly also not sufficient. The explicit bias that came from seeing “x is positive” is relatively easy to avoid – you know not to carry over that explicit information from Statement 1 to Statement 2.

But you also need to be just as aware of implicit bias. Try this question, as it is more likely to appear on the actual GMAT:

If y is an odd integer and the product of x and y equals 222, what is the value of x?

1) x is a prime number

2) y is a 3 digit number

On this version of the problem, people become extremely susceptible to implicit bias. You no longer get to quickly rule out the obvious “x is positive.” Here, the first statement serves to pollute your mind – it is, on its own merit, sufficient (if y is odd and the product of x and y is even, the only prime number x could be is 2, the only even prime), but it also serves to get you thinking about positive numbers (only positive numbers can be prime) and integers (only integers are prime). But those aren’t explicitly stated; they’re just inferences that your mind quickly makes, and then has trouble getting rid of. So as you assess Statement 2, it’s harder for you to even think of the possibilities that:

x could be -2 and y could be -111: You’re not thinking about negatives!

x could be 2/3 and y could be 333: You’re not thinking about non-integers!

On this problem, over 50% of users say that Statement 2 is sufficient (and less than 25% correctly answer A, that Statement 1 alone is sufficient), because they fall victim to that implicit bias that comes from Statement 1 whispering – not shouting – “positive integers.”

Harder problems will generally prey on your more subtle bias, so you need to make sure you’re giving each statement a fresh set of available options. So this Martin Luther King, Jr. weekend, applaud the progress that you have made in removing explicit bias from your Data Sufficiency regimen – you now know not to include Statement 1 directly in your assessment of Statement 2 ALONE – but remember that implicit bias is just as dangerous to your score. Pay attention to the times that implicit bias draws you to a poor decision, and be steadfast in your mission to give each statement its deserved, unbiased attention.

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+ and Twitter!

By Brian Galvin.

How to Make Rate Questions Easy on the GMAT

Integrated Reasoning StrategiesI recently wrote about the reciprocal relationship between rate and time in “rate” questions. Occasionally, students will ask why it’s important to understand this particular rule, given that it’s possible to solve most questions without employing it.

There are two reasons: the first is that knowledge of this relationship can convert incredibly laborious arithmetic into a very straightforward calculation. And the second is that this same logic can be applied to other types of questions. The goal, when preparing for the GMAT, isn’t to internalize hundreds of strategies; it’s to absorb a handful that will prove helpful on a variety of questions.

The other night, I had a tutoring student present me with the following question:

It takes Carlos 9 minutes to drive from home to work at an average rate of 22 miles per hour.  How many minutes will it take Carlos to cycle from home to work along the same route at an average rate of 6 miles per hour?

(A) 26

(B) 33

(C) 36

(D) 44

(E) 48

This question doesn’t seem that hard, conceptually speaking, but here is how my student attempted to do it: first, he saw that the time to complete the trip was given in minutes and the rate of the trip was given in hours so he did a simple unit conversion, and determined that it took Carlos (9/60) hours to complete his trip.

He then computed the distance of the trip using the following equation: (9/60) hours * 22 miles/hour = (198/60) miles. He then set up a second equation: 6miles/hour * T = (198/60) miles. At this point, he gave up, not wanting to wrestle with the hairy arithmetic. I don’t blame him.

Watch how much easier it is if we remember our reciprocal relationship between rate and time. We have two scenarios here. In Scenario 1, the time is 9 minutes and the rate is 22 mph. In Scenario 2, the rate is 6 mph, and we want the time, which we’ll call ‘T.” The ratio of the rates of the two scenarios is 22/6. Well, if the times have a reciprocal relationship, we know the ratio of the times must be 6/22. So we know that 9/T = 6/22.

Cross-multiply to get 6T = 9*22.

Divide both sides by 6 to get T = 9*22/6.

We can rewrite this as T = (9*22)/(3*2) = 3*11 = 33, so the answer is B.

The other point I want to stress here is that there isn’t anything magical about rate questions. In any equation that takes the form a*b = c, a and b will have a reciprocal relationship, provided that we hold c constant. Take “quantity * unit price = total cost”, for example. We can see intuitively that if we double the price, we’ll cut the quantity of items we can afford in half. Again, this relationship can be exploited to save time.

Take the following data sufficiency question:

Pat bought 5 lbs. of apples. How many pounds of pears could Pat have bought for the same amount of money? 

(1) One pound of pears costs $0.50 more than one pound of apples. 

(2) One pound of pears costs 1 1/2 times as much as one pound of apples. 

Statement 1 can be tested by picking numbers. Say apples cost $1/pound. The total cost of 5 pounds of apples would be $5.  If one pound of pears cost $.50 more than one pound of apples, then one pound of pears would cost $1.50. The number of pounds of pears that could be purchased for $5 would be 5/1.5 = 10/3. So that’s one possibility.

Now say apples cost $2/pound. The total cost of 5 pounds of apples would be $10. If one pound of pears cost $.50 more than one pound of apples, then one pound of pears would cost $2.50. The number of pounds of pears that could be purchased for $10 would be 10/2.5 = 4. Because we get different results, this Statement alone is not sufficient to answer the question.

Statement 2 tells us that one pound of pears costs 1 ½ times (or 3/2 times) as much as one pound of apples. Remember that reciprocal relationship! If the ratio of the price per pound for pears and the price per pound for apples is 3/2, then the ratio of their respective quantities must be 2/3. If we could buy five pounds of apples for a given cost, then we must be able to buy (2/3) * 5 = (10/3) pounds of pears for that same cost. Because we can find a single unique value, Statement 2 alone is sufficient to answer the question, and we know our answer must be B.

Takeaway: Remember that in “rate” questions, time and rate will have a reciprocal relationship, and that in “total cost” questions, quantity and unit price will have a reciprocal relationship. Now the time you save on these problem-types can be allocated to other questions, creating a virtuous cycle in which your time management, your accuracy, and your confidence all improve in turn.

*GMATPrep questions courtesy of the Graduate Management Admissions Council.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on FacebookYouTubeGoogle+ and Twitter!

By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles by him here.

Use Number Lines on the GMAT, Not Memory!

SAT/ACTI’ve written in the past about how the biggest challenge on many GMAT questions is the strain they put on our working memory. Working memory, or our ability to process information that we hold temporarily, is by definition quite limited. It’s why phone numbers only contain seven digits – any more than that and most people wouldn’t be able to recall them. (Yes, there was a time, in the dark and distant past, when we had to remember phone numbers.)

One of the most simple and effective strategies we can deploy to combat our working memory limitations is to simply list out the sample space of scenarios we’re dealing with. If we were told, for example, that x is a prime number less than 20, rather than internalize this information, we can jot down x = 2, 3, 5, 7, 11, 13, 17, or 19. The harder and more abstract the question, the more necessary such a strategy will prove to be.

Take this challenging Data Sufficiency question, for example:

On the number line, the distance between x and y is greater than the distance between x and z. Does z lie between x and y on the number line?

1) xyz < 0

2) xy <0

The reader is hereby challenged to attempt this exercise in his or her head without inducing some kind of hemorrhage.

So, rather than try to conceptualize this problem mentally, let’s start by actually writing down all the number line configurations that we might have to deal with before even glancing at the statements. We know that x and z are closer than x and y. So we could get the following:

x____z_______________________y

z____x_______________________y

Or we can swap x and y to generate a kind of mirror image

y______________________x_____z

y______________________z_____x

The above number lines are the only four possibilities given the constraints provided in the question stem. Now we have something concrete and visual that we can use when evaluating the statements.

Statement 1 tells us that the product of the three variables is negative. If you’ve internalized your number properties – and we heartily encourage that you do – you know that a product is negative if there are an odd number of negative elements in said product. In this case, that means that either one of the variables is negative, or all three of them are. So let’s use say one of the variables is negative. By placing a 0 strategically, we can use any of our above number lines:

x__0__z______________________y

z__0__x______________________y

y__0___________________x_____z

y__0___________________z_____x

Each of these scenarios will satisfy that first statement. But we only need two.

In our first number line, z is between x and y, so we get a YES to the question.

In our second number line, z is not between x and y, so we get a NO to the question.

Because we can get a YES or a NO to the original question, Statement 1 alone is not sufficient. Eliminate answer choices A and D.

Statement 2 tells us that the product of x and y is negative. Thus, we know that one of the variables is positive, and one of the variables is negative. Again, we can simply peruse our number lines and select a couple of examples that satisfy this condition.

In our first number line, z is between x and y, so we get a YES to the question.

In our third number line, z is not between x and y, so we get a NO to the question.

Like with Statement 1, because we can get a YES or NO to the original question, Statement 2 alone is also not sufficient. Eliminate answer choice B.

When testing the statements together, we know two pieces of information. Statement 1 tells us that either one variable is negative or all three are. Statement 2 tells us that, between x and y, we have one negative and one positive. Therefore, together, we know that either x or y is negative, and the remaining variables are all positive. Now all we have to do is peruse our sample space and locate these scenarios. It turns out that we can use the same two number lines we used when testing Statement 2:

In our first number line, z is between x and y, so we get a YES to the question.

In our third number line, z is not between x and y, so we get a NO to the question.

So even together, the statements are not sufficient to answer the question – the correct answer is E.

Takeaway: on the GMAT there’s no reason to strain your brain any more than is necessary. The more concrete you can make the information you’re provided on a given question, the more likely it is that you’ll be able to properly execute whatever math or logic maneuvers you’re asked to perform.

*GMATPrep question courtesy of the Graduate Management Admissions Council.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And, be sure to find us on Facebook, YouTubeGoogle+ and Twitter!

By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles by him here.

GMAT Tip of the Week

Data Sufficiency – Where “No” Means “Affirmative”

(This is one of a series of GMAT tips that we offer on our blog.)

My hat is off to whomever created the Data Sufficiency question type, which holds within its format several delightfully crafty ways to elicit an incorrect answer. Perhaps none is more tricky and understated, however, than the method by which the test preys on our innate connection between the word “no” and its connotation of “negative”. (Author’s Note: This same connection was exploited recently-and-brilliantly on an episode of 30 Rock, in which Tracy Jordan exclaims that Jack’s medical test results were “positive” — meaning “good news” — because the actual results came back “negative”. But I digress…)

To illustrate, a Data Sufficiency question might ask:

Is x > 0?

A simple enough question, it would seem – is x positive – but then consider a potential first statement:

1) IxI = -x

This statement tells us that the absolute value of the number is equal to itself multiplied by negative one. Because of this, the number cannot be positive – any positive number multiplied by negative one becomes negative, but all absolute values are either positive or zero. A positive number simply cannot satisfy statement 1, and the answer to the overall question — Is x > 0? — is “no”.

Herein lies the rub — the answer to the question is “no,” which may lead you to believe that statement 1 is “negative” or “undesirable,” because of that connotation of the word “no” at which we just arrived. However, “no” is a definitive answer to the overall question. Given the information in statement one, we can prove one answer to that question, which means that “Statement (1) ALONE is sufficient”.

If you see, it would be easy, and somewhat intuitive, to “eliminate” statement 1 because it provided the answer “no”. But that’s not what Data Sufficiency questions ask — instead, they ask “do you have enough information to answer the question?”. Because of that, a definitive answer of “no” is, in fact, enough to answer the question, and so you must remind yourself that “no” means “sufficient”. To combat this common pitfall, I suggest writing the word “sufficient” at the top of your noteboard, and glancing at it each time you answer a Data Sufficiency question to remind yourself what the question is specifically asking.

Veritas Prep offers a full lesson on the Data Sufficiency question format, as well as hundreds of Data Sufficiency practice problems in its quantitative curriculum. For more information, please take a look at all of Veritas Prep’s GMAT preparation options.

GMAT Tip of the Week

(This is one of a series of GMAT tips that we offer on our blog.)

Think Like the GMAT Testmaker

The GMAT is a difficult exam; there’s simply no way around that fact. Knowing why it is difficult, however, will help you to better plan for it, and a fantastic way to gain that knowledge is to put yourself in the position of the writers of the exam.

As any GMAT examinee knows, Data Sufficiency questions can often be tricky or confusing simply because of the unique format of the question. It is rare, if it occurs at all, that you encounter situations in which you are not asked to solve a problem, but are asked if the tools provided would be sufficient to do so (however, as a manager, you’ll be asked this question quite a bit – what resources will you need to complete this project in a cost-effective manner?).

To gain experience with the tricks and traps that the format allows the writers of the exam to employ, try writing a few questions of your own with the intent of ‘tricking and trapping’ your friends. In order to do so, you will need to anticipate the mistakes that someone could easily make – and those are the mistakes that could trip you up, too. Does it seem as though someone could forget about the exception to the rule that you ‘hid’ in statement 1? Does statement 2 supply that one missing piece of information that was omitted from statement 1, baiting someone to select “B”, even though statement 2 is clearly insufficient on its own? Laying these traps for someone else is a great way to become more aware of them for yourself.

Note that you can craft questions in this format even without using mathematical concepts to do so. Here’s an example:

Question: Name this U.S. President.

(1) He has the same first name as his father.

(2) His presidency began after the American Civil War.

Answer: Many would be tempted to select (C), narrowing the choices down to John Quincy Adams and George W. Bush, then eliminating Adams with statement 2. However, doing so would assume that the father mentioned in statement 1 was also a President, which is not explicitly stated. Actually, the answer must be (E), as both George W. Bush and William McKinley, for example, had the same names as their fathers – McKinley’s father was not a President, but that wasn’t required by this question, even though some may have assumed it.

That assumption error is akin to a GMAT examinee assuming that a value must be an integer, or must be a positive number. By writing trivia questions designed to capitalize on potential errors, you can become more attuned to the mistakes that you may make on test day.

If you would like more GMAT help, take a look at the GMAT prep resources on our web site, and take a free practice GMAT exam.