The post Quarter Wit, Quarter Wisdom: Using the Standard Deviation Formula on the GMAT appeared first on Veritas Prep Blog.

]]>Today, we will look at some GMAT questions that involve sets with similar standard deviations such that it is hard to tell which will have a higher SD without properly understanding the way it is calculated. Take a look at the following question:

*Which of the following distribution of numbers has the greatest standard deviation? *

*(A) {-3, 1, 2} *

*(B) {-2, -1, 1, 2} *

*(C) {3, 5, 7} *

*(D) {-1, 2, 3, 4} *

*(E) {0, 2, 4}*

At first glance, these sets all look very similar. If we try to plot them on a number line, we will see that they also have similar distributions, so it is hard to say which will have a higher SD than the others. Let’s quickly review their deviations from the arithmetic means:

For answer choice A, the mean = 0 and the deviations are 3, 1, 2

For answer choice B, the mean = 0 and the deviations are 2, 1, 1, 2

For answer choice C, the mean = 5 and the deviations are 2, 0, 2

For answer choice D, the mean = 2 and the deviations are 3, 0, 1, 2

For answer choice E, the mean = 2 and the deviations are 2, 0, 2

We don’t need to worry about the arithmetic means (they just help us calculate the deviation of each element from the mean); our focus should be on the deviations. The SD formula squares the individual deviations and then adds them, then the sum is divided by the number of elements and finally, we find the square root of the whole term. So if a deviation is greater, its square will be even greater and that will increase the SD.

If the deviation increases and the number of elements increases, too, then we cannot be sure what the final effect will be – an increased deviation increases the SD but an increase in the number of elements increases the denominator and hence, actually decreases the SD. The overall effect as to whether the SD increases or decreases will vary from case to case.

First, we should note that answers C and E have identical deviations and numbers of elements, hence, their SDs will be identical. This means the answer is certainly not C or E, since Problem Solving questions have a single correct answer.

Let’s move on to the other three options:

For answer choice A, the mean = 0 and the deviations are 3, 1, 2

For answer choice B, the mean = 0 and the deviations are 2, 1, 1, 2

For answer choice D, the mean = 2 and the deviations are 3, 0, 1, 2

Comparing answer choices A and D, we see that they both have the same deviations, but D has more elements. This means its denominator will be greater, and therefore, the SD of answer D is smaller than the SD of answer A. This leaves us with options A and B:

For answer choice A, the mean = 0 and the deviations are 3, 1, 2

For answer choice B, the mean = 0 and the deviations are 2, 1, 1, 2

Now notice that although two deviations of answers A and B are the same, answer choice A has a higher deviation of 3 but fewer elements than answer choice B. This means the SD of A will be higher than the SD of B, so the SD of A will be the highest. Hence, our answer must be A.

Let’s try another one:

*Which of the following data sets has the third largest standard deviation?*

*(A) {1, 2, 3, 4, 5} *

*(B) {2, 3, 3, 3, 4} *

*(C) {2, 2, 2, 4, 5} *

*(D) {0, 2, 3, 4, 6} *

*(E) {-1, 1, 3, 5, 7}*

How would you answer this question without calculating the SDs? We need to arrange the sets in increasing SD order. Upon careful examination, you will see that the number of elements in each set is the same, and the mean of each set is 3.

Deviations of answer choice A: 2, 1, 0, 1, 2

Deviations of answer choice B: 1, 0, 0, 0, 1 (lowest SD)

Deviations of answer choice C: 1, 1, 1, 1, 2

Deviations of answer choice D: 3, 1, 0, 1, 3

Deviations of answer choice E: 4, 2, 0, 2, 4 (highest SD)

Obviously, option B has the lowest SD (the deviations are the smallest) and option E has the highest SD (the deviations are the greatest). This means we can automatically rule these answers out, as they cannot have the third largest SD.

Deviations of answer choice A: 2, 1, 0, 1, 2

Deviations of answer choice C: 1, 1, 1, 1, 2

Deviations of answer choice D: 3, 1, 0, 1, 3

Out of these options, answer choice D has a higher SD than answer choice A, since it has higher deviations of two 3s (whereas A has deviations of two 2s). Also, C is more tightly packed than A, with four deviations of 1. If you are not sure why, consider this:

The square of deviations for C will be 1 + 1+ 1 + 1 + 4 = 8

The square of deviations for A will be 4 + 1 + 0 + 1 + 4 = 10

So, A will have a higher SD than C but a lower SD than D. Arranging from lowest to highest SD’s, we get: B, C, A, D, E. Answer choice A has the third highest SD, and therefore, A is our answer

Although we didn’t need to calculate the actual SD, we used the concepts of the standard deviation formula to answer these questions.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Using the Standard Deviation Formula on the GMAT appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: An Innovative Use of the Slope of a Line on the GMAT appeared first on Veritas Prep Blog.

]]>The concept of slope is extremely important on the GMAT – it is not sufficient to just know how to calculate it using (y2 – y1)/(x2 – x1).

In simple terms, the slope of a line specifies the units by which the y-coordinate changes and the direction in which it changes with each 1 unit increase in the x-coordinate. If the slope (m) is positive, the y-coordinate changes in the same direction as the x-coordinate. If m is negative, however, the y-coordinate changes in the opposite direction.

For example, if the slope of a line is 2, it means that every time the x-coordinate increases by 1 unit, the y-coordinate increases by 2 units. So if the point (3, 5) lies on a line with a slope of 2, the point (4, 7) will also lie on it. Here, when the x-coordinate increases from 3 to 4, the y-coordinate increases from 5 to 7 (by an increase of 2 units). Similarly, the point (2, 3) will also lie on this same line – if the x-coordinate decreases by 1 unit (from 3 to 2), the y-coordinate will decrease by 2 units (from 5 to 3). Since the slope is positive, the direction of change of the x-coordinate will be the same as the direction of change of the y-coordinate.

Now, if we have a line where the slope is -2 and the point (3, 5) lies on it, when the x-coordinate increases by 1 unit, the y-coordinate DECREASES by 2 units – the point (4, 3) will also lie on this line. Similarly, if the x-coordinate decreases by 1 unit, the y-coordinate will increase by 2 units. So, for example, the point (2, 7) will also lie on this line.

This understanding of the concept of slope can be very helpful, as we will see in this GMAT question:

*Line L and line K have slopes -2 and 1/2 respectively. If line L and line K intersect at (6,8), what is the distance between the x-intercept of line L and the y-intercept of line K? *

*(A) 5*

*(B) 10*

*(C) 5√(5)*

*(D) 15*

*(E) 10√(5)*

**Method 1: The Traditional Approach**

Traditionally, one would solve this question like this:

The equation of a line with slope m and constant c is given as y = mx + c. Therefore, the equations of lines L and K would be:

Line L: y = (-2)x + a

and

Line K: y = (1/2)x + b

As both these lines pass through (6,8), we would substitute x=6 and y=8 to get the values of a and b.

Line L: 8 = (-2)*6 + a

a = 20

Line K: 8 = (1/2)*6 + b

b = 5

Thus, the equations of the 2 lines become:

Line L: y = (-2)x + 20

and

Line K: y = (1/2)x + 5

The x-intercept of a line is given by the point where y = 0. So, the x-intercept of line L is given by:

0 = (-2)x + 20

x = 10

This means line L intersects the x-axis at the point (10, 0).

Similarly, the y-intercept of a line is given by the point where x = 0. So, y-intercept of line K is given by:

y = (1/2)*0 + 5

y = 5

This means that line K intersects the y-axis at the point (0, 5).

Looking back at our original question, the distance between these two points is given by √((10 – 0)^2 + (0 – 5)^2) = 5√(5). Therefore, our answer is C.

**Method 2: Using the Slope Concept**

Although the using the traditional method is effective, we can answer this question much quicker using the concept we discussed above.

Line L has a slope of -2, which means that for every 1 unit the x-coordinate increases, the y-coordinate decreases by 2. Line L also passes through the point (6, 8). We know the line must intersect the x-axis at y = 0, which is a decrease of 8 y-coordinates from the given point (6,8). If y increases by 8, according to our slope concept, x will increase by 4 to give 6 + 4 = 10. So the x-intercept of line L is at (10, 0).

Line K has slope of 1/2 and also passes through (6, 8). We know the this line must intersect the y-axis at x = 0, which is a decrease of 6 x-coordinates from the given point (6,8). This means y will decrease by 1/2 of that (6*1/2 = 3) and will become 8 – 3 = 5. So the y-intercept of line K is at (0, 5).

The distance between the two points can now be found using the Pythagorean Theorem – √(10^2 + 5^2) = 5√(5), therefore our answer is, again, C.

Using the slope concept makes solving this question much less tedious and saves us a lot of precious time. That is the advantage of using holistic approaches over the more traditional approaches in tackling GMAT questions.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: An Innovative Use of the Slope of a Line on the GMAT appeared first on Veritas Prep Blog.

]]>The post Coordinate Geometry: Solving GMAT Problems With Lines Crossing Either the X-Axis or the Y-Axis appeared first on Veritas Prep Blog.

]]>*Does the line with equation ax+by = c, where a,b and c are real constants, cross the x-axis?*

What concepts will you use here? How will you find whether or not a line crosses the x-axis? What conditions should it meet? Think about this a little before you move ahead.

We know that most lines on the XY plane cross the x-axis as well as the y-axis. Even if it looks like a given line doesn’t cross either of these axes, eventually, it will if it has a slope other than 0 or infinity.

Note that by definition, a line extends infinitely in both directions – it has no end points (otherwise it would be a line “segment”). We cannot depict a line extending infinitely, which is why we will only show a small section of it. Ideally, a line on the XY plane should be shown with arrowheads to depict that it extends infinitely on both sides, but we often omit them for our convenience. For instance, if we try to extend the example line above, we see that it does, in fact, cross the x-axis:

So what kind of lines do not cross either the x-axis or the y-xis? We know that the equation of a line on the XY plane is given by ax + by + c = 0. We also know that if we want to find the slope of a line, we can use the equation y = (-a/b)x – c/b, where the slope of the line is -a/b.

A line with a slope of 0 is parallel to the x-axis. For the slope (i.e. -a/b) to be 0, a must equal 0. So if a = 0, the line will not cross the x-axis – it is parallel to the x-axis. The equation of the line, in this case, will become y = k. In all other cases, a line will cross the x-axis at some point.

Similarly, it might appear that a line doesn’t cross the y-axis but it does at some point if its slope is anything other than infinity. A line with a slope of infinity is parallel to the y-axis. For -a/b to be infinity, b must equal 0. So if b = 0, the line will not cross the y-axis. The equation of the line in this case will become x = k. In all other cases, a line will cross the y-axis at some point.

Now, we can easily solve this official question:

*Does the line with equation ax+by = c, where a, b and c are real constants, cross the x-axis?*

*Statement 1: b not equal to 0*

*Statement 2: ab > 0*

As we discussed earlier, all lines cross the x-axis except lines which have a slope of 0, i.e. a = 0.

*Statement 1: b not equal to 0*

This tells statement us that b is not 0 – which means the line is not parallel to y-axis – but it doesn’t tell us whether or not a is 0, so we don’t know whether the line is parallel to the x-axis or crosses it. Therefore, this statement alone is not sufficient.

*Statement 2: ab>0*

If ab > 0, it means that neither a nor b is 0 (since any number times 0 will equal 0). This means the line is parallel to neither x-axis nor the y-xis, and therefore must cross the x-axis. This statement alone is sufficient and our answer is B.

Hopefully this has helped clear up some coordinate geometry concepts today.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Coordinate Geometry: Solving GMAT Problems With Lines Crossing Either the X-Axis or the Y-Axis appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Be Tolerant Towards Pronoun Ambiguity on the GMAT appeared first on Veritas Prep Blog.

]]>**Using a pronoun without an antecedent.** For example, the sentence, “Although Jack is very rich, he makes poor use of it,” is incorrect because “it” has no antecedent. The antecedent should instead be “money” or “wealth.”

**Error in matching the pronoun to its antecedent in number and gender.** For example, the sentence, “Pack away the unused packets, and save it for the next game,” is incorrect because the antecedent of “it” is referring to “unused packets,” which is plural.

**Using a nominative/objective case pronoun when the antecedent is possessive. **For example, the sentence, “The client called the lawyer’s office, but he did not answer,” is incorrect because the antecedent of “he” should be referring to “lawyer,” but it appears only in the possessive case. Official GMAT questions will not give you this rule as the only decision point between two options.

But note that the rules governing pronoun ambiguity are not as strict as other rules! Pronoun ambiguity should be the last decision point for eliminating an option after we have taken care of SV agreements, tenses, modifiers, parallelism etc.

Every sentence that has two nouns before a pronoun does not fall under the “pronoun ambiguity error” category. If the pronoun agrees with two nouns in number and gender, and both nouns could be the antecedent of the pronoun, then there is a possibility of pronoun ambiguity. But in other cases, logic can dictate that only one of the nouns can really perform (or receive) an action, and so it is logically clear to which noun the pronoun refers.

For example, “Take the bag out of the car and get it fixed.”

What needs to get fixed? The bag or the car? Either is possible. Here we have a pronoun ambiguity, but it is highly unlikely you will see something like this on the GMAT.

A special mention should be made here about the role nouns play in the sentence. Often, a pronoun which acts as the subject of a clause refers to the noun which acts as a subject of the previous clause. In such sentences, you will often find that the antecedent is unambiguous. Similarly, if the pronoun acts as the direct object of a clause, it could refer to the direct object of the previous clause. If the pronoun and its antecedent play parallel roles, a lot of clarity is added to the sentence. But it is not necessary that the pronoun and its antecedent will play parallel roles.

Let’s look at a different example, “The car needs to be taken out of the driveway and its brakes need to get fixed.”

Here, obviously the antecedent of “its” must be the car since only it has brakes, not the driveway. Besides, the car is the subject of the previous clause and “its” refers to the subject. Hence, this sentence would be acceptable.

A good rule of thumb would be to look at the options. If no options sort out the pronoun issue by replacing it with the relevant noun, just forget about pronoun ambiguity. If there are options that clarify the pronoun issue by replacing it with the relevant noun, consider all other grammatical issues first and then finally zero in on pronoun ambiguity.

Let’s take a quick look at some official GMAT questions involving pronouns now:

*Congress is debating a bill requiring certain employers **provide workers with unpaid leave so as to** care for sick or newborn children. *

*(A) provide workers with unpaid leave so as to *

*(B) to provide workers with unpaid leave so as to *

*(C) provide workers with unpaid leave in order that they *

*(D) to provide workers with unpaid leave so that they can *

*(E) provide workers with unpaid leave and *

The answer is (D). Why? The correct sentence would use “to provide” (not “provide”) and “so that” (not “so as to”), and should read, “Congress is debating a bill requiring certain employers to provide workers with unpaid leave so that they can care for sick or newborn children.” In this sentence, “they” logically refers to “workers.” Even though “they” could refer to employers, too, after you sort out the rest of the errors, you are left with (D) only, hence answer must be (D).

Let’s look at another question:

*While depressed property values can hurt some large investors, **they are potentially devastating for homeowners, whose **equity – in many cases representing a life’s savings – can plunge or even disappear.*

*(A) they are potentially devastating for homeowners, whose*

*(B) they can potentially devastate homeowners in that their*

*(C) for homeowners they are potentially devastating, because their*

*(D) for homeowners, it is potentially devastating in that their*

*(E) it can potentially devastate homeowners, whose*

The correct answer is (A). The correct sentence should read, “While depressed property values can hurt some large investors, they are potentially devastating for homeowners, whose equity – in many cases representing a life’s savings – can plunge or even disappear.” The pronoun “they” logically refers to “depressed property values.” Both the pronoun and its antecedent serve as subjects in their respective clauses, so the pronoun antecedent is quite clear.

One more question:

*Although Napoleon’s army entered Russia with far more supplies than **they had in their previous campaigns**, it had provisions for only twenty-four days. *

*(A) they had in their previous campaigns *

*(B) their previous campaigns had had *

*(C) they had for any previous campaign *

*(D) in their previous campaigns *

*(E) for any previous campaign*

The correct answer is (E). The correct sentence should read, “Although Napoleon’s army entered Russia with far more supplies than for any previous campaign, it had provisions for only twenty-four days.”

The pronoun “it” logically refers to “Napolean’s army” and not Russia. Both the pronoun and its antecedent serve as subjects in their respective clauses, so the pronoun antecedent is quite clear. Note that the pronoun and its antecedent are a part of the non-underlined portion of the sentence so we don’t need to worry about the usage here but it strengthens our understanding of pronoun ambiguity.

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Be Tolerant Towards Pronoun Ambiguity on the GMAT appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Using a Venn Diagram vs. a Double Set Matrix on the GMAT appeared first on Veritas Prep Blog.

]]>Venn diagrams are like Superman – all powerful. They can help you solve almost all questions involving either 2 or 3 overlapping sets. But then, there are some situations in which double set matrix method (aka Batman with his amazing weaponry) might be easier to use. It is possible to solve these questions using Venn diagrams, too, but it is more convenient to solve them using a Double Set Matrix.

We have discussed solving three overlapping sets using Venn diagrams here.

Today, we will look at the case in which using a Double Set Matrix is easier than using a Venn diagram – in instances where we have two sets of variables, such as English/Math and Middle School/High School, or Cake/Ice cream and Boys/Girls, etc.

Eventually, we will solve our question again using a Venn diagram, for those who like to use a single method for all similar questions. First, take a look at our question:

*A business school event invites all of its graduate and undergraduate students to attend. Of the students who attend, male graduate students outnumber male undergraduates by a ratio of 7 to 2, and females constitute 70% of the group. If undergraduate students make up 1/6 of the group, which of the following CANNOT represent the number of female graduate students at the event?*

*(A) 18*

*(B) 27*

*(C) 36*

*(D) 72*

*(E) 180*

To solve this problem using a Double Set Matrix, first jot down one set of variables as the row headings and the other as the column headings, as well as a row and column for “totals.” Now all you need to do is add in the information line by line as you read through the question.

“…*male graduate students outnumber male undergraduates by a ratio of 7 to 2…*”

“…*females constitute 70% of the group.*”

Female students make up 70% of the group, which implies that male students (total of 9x) make up 30% of the group.

9x = (30/100)*Total Students

Total Students = 30x

Since 9x is the total number of male students while 30x is the total number of all students, the total number of female students must be 30x – 9x = 21x.

“*If undergraduate students make up 1/6 of the group…*”

Undergrad students make 1/6 of the group, i.e. (1/6)*30x = 5x

If the total number of undergrad students is 5x and the number of male undergrad students is 2x, the number of female undergrad students must be 5x – 2x = 3x.

This implies that the number of graduate females must be 18x, since the total number of females is 21x.

Therefore, the number of graduate females must be a multiple of 18. 27 is the only answer choice that is not a multiple of 18, so it cannot be the number of graduate females – therefore, our answer must be B.

Now, here is how Superman can rescue us in this question. An analysis similar to the one above will give us a Venn diagram which looks like this:

Of course, we will get the same answer: the number of graduate females must be a multiple of 18. We know 27 is not a multiple of 18, so it cannot be the number of graduate females and therefore, our answer is still B.

Hopefully, next time you come across an overlapping sets question, you will know exactly who your superhero is!

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Using a Venn Diagram vs. a Double Set Matrix on the GMAT appeared first on Veritas Prep Blog.

]]>The post What Makes GMAT Quant Questions So Hard? appeared first on Veritas Prep Blog.

]]>Hence, it often comes as a shock when many test-takers, including engineering students, receive a dismal Quant score on the first practice test they take. Of course, with practice, they usually wise up to the treachery of the GMAT, but until then, the Quant section is responsible for many a nightmare!

Today, let’s see what kind of treachery we are talking about – problems like this make some people laugh out loud and others pull at their hair!

*Is the product pqr divisible by 12?*

*Statement 1: p is a multiple of 3*

*Statement 2: q is a multiple of 4*

This seems like an easy C (Statements 1 and 2 together are sufficient, but alone are not sufficient), doesn’t it? P is a multiple of 3 and q is a multiple of 4, so together, p*q would be a multiple of 3*4 = 12. If p * q is already a multiple of 12, then obviously it would seem that p*q*r would be a multiple of 12, too.

But here is the catch – where is it mentioned that r must be an integer? Just because p and q are integers (multiples of 3 and 4 respectively), it does not imply that r must also be an integer.

If r is an integer, then sure, p*q*r will be divisible by 12. Imagine, however, that p = 3, q = 4 and r = 1/12. Now the product p*q*r = 3*4*(1/12) = 1. 1 is not divisible by 12, so in this case, pqr is not divisible by 12. Hence, both statements together are not sufficient to answer the question, and our answer is in fact E!

This question is very basic, but it still tricks us because we want to assume that p, q and r are clean integer values.

Along these same lines, let’s try the another one:

*If 10^a * 3^b * 5^c = 450^n, what is the value of c?*

*Statement 1: a is 1.*

*Statement 2: b is 2.*

The first thing most of us will do here is split 450 into its prime factors:

450 = 2 * 3^2 * 5^2

450^n = 2^n * 3^2n * 5^2n

And do the same thing with the left side of the equation:

10^a * 3^b * 5^c = 2^a * 3^b * 5^(a+c)

Bringing the given equation back, we get:

2^a * 3^b * 5^(a+c) = 2^n * 3^2n * 5^2n

*Statement 1: a is 1.*

Equating the power of 2 on both sides, we see that a = n = 1.

a + c = 2n (equating the power of 5 on both sides)

1 + c = 2

c = 1

*Statement 2: b is 2.*

Equating the power of 3 on both sides, we see that b = 2n = 2, so n = 1.

If n = 1, a = 1 by equating the powers of 2 on both sides.

a + c = 2n (equating the power of 5 on both sides)

1 + c = 2

c = 1

So it seems that both statements are separately sufficient. But hold on – again, the variables here don’t need to be cleanly fitting integers. The variables could pan out the way discussed in our first problem, or very differently.

Say, n = 1. When Statement 1 gives you that a = 1, you get 10^1 * 3^b * 5^c = 450^1.

3^b * 5^c = 45

Now note that value of c depends on the value of b, which needn’t be 2.

If b = 3, then 3^3 * 5^c = 45.

5^c = 45/27

C will take a non-integer value here.

c = .3174

The question does not mention that all variables are integers, therefore there are infinite values that c can take depending on the values of b. Similarly, we can see that Statement 2 alone is also not sufficient. Using both statements together, you will get:

2^a * 3^b * 5^(a+c) = 450^n

2^1 * 3^2 * 5^(1 + c) = 450^n

5^(1 + c) = 450^n/18

By now, you’ve probably realized that depending on the value of n, c can take infinite different values. If n = 1, c = 1. If n = 2, c = 4.8. And so on… We don’t need to actually find these values – it is enough to know that different values of n will give different values of c.

With this in mind, we can see that both statements together are not sufficient, and therefore our answer must be E.

Hopefully, in future, this sneaky trick will not get you!

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post What Makes GMAT Quant Questions So Hard? appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Dealing with Tangents on the GMAT appeared first on Veritas Prep Blog.

]]>

In each of these cases, the line touches the curve at a single point. In the case of a circle, when you draw the radius of the circle from the center to the point of contact with the tangent, the radius is perpendicular to the tangent (as demonstrated in the figure on the right, above). A question discussing this concept is given in our post here.

Today, we will look at a question involving a tangent to a parabola:

*If f(x) = 3x^2 – tx + 5 is tangent to the x-axis, what is the value of the positive number t?*

*(A) 2√15*

*(B) 4√15*

*(C) 3√13*

*(D) 4√13*

*(E) 6√15*

Let’s first try to understand what the question is saying.

f(x) is a tangent to the x-axis. We know that the x-axis is a straight line, so f(x) must be a curve. A quadratic equation, such as our given equation of f(x) = 3x^2 -tx +5, gives a parabola. Since the x^2 term in the equation is positive, the parabola would be facing upwards and touching the x-axis at a single point, such as:

Since the parabola touches the x-axis in only one point, it means the quadratic has only one root, or in other words, the quadratic must be a perfect square.

Therefore, f(x) = 3x^2 – tx + 5 = √3(x)^2 – tx + (√5)^2

To get f(x) in the form a^2 – 2ab + b^2 = (a – b)^2,

tx = 2ab = (2√3)x * √5

t = 2√15

Note that if t takes this value, the quadratic will have only one root.

Plugging this value of t back into our equation, we will get: f(x) = √3(x)^2 – 2(√15)(x) + (√5)^2

f(x) = (√3)x – (√5)^2

We know that the root of f(x) is the point where the value of the y coordinate is 0. Therefore:

(√3)x – (√5)^2 = 0

x = (√5)/(√3)

At this x co-ordinate, the parabola will touch the x axis.

[This calculation was shown only to help you completely understand the question. We could have easily stopped at t = 2(√15).]

Therefore, our answer is A.

The question can be solved in various other ways – think of how, and write your thoughts in the comments below!

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Dealing with Tangents on the GMAT appeared first on Veritas Prep Blog.

]]>The post Understanding Absolute Values with Two Variables appeared first on Veritas Prep Blog.

]]>Recall the definition of absolute value:

**|x| = x if x ≥ 0**

**|x| = -x if x < 0**

So, to remove the absolute value sign, you will need to consider two cases – one when x is positive or 0, and another when it is negative.

Say, you are given an inequality, such as |x – y| < |x|. Here, you have two absolute value expressions: |x – y| and |x|. You need to get rid of the absolute value signs, but how will you do that?

You know that to remove the absolute value sign, you need to consider the two cases. Therefore:

|x – y| = (x – y) if (x – y) ≥ 0

|x – y| = – (x – y) if (x – y) < 0

But don’t forget, we also need to remove the absolute value sign that |x| has. Therefore:

|x| = x if x ≥ 0

|x| = -x if x < 0

In all we will get four cases to consider:

Case 1: (x – y) ≥ 0 and x ≥ 0

Case 2: (x – y) < 0 and x ≥ 0

Case 3: (x – y) ≥ 0 and x < 0

Case 4: (x – y) < 0 and x < 0

Let’s look at each case separately:

Case 1: (x – y) ≥ 0 (which implies x ≥ y) and x ≥ 0

|x – y| < |x|

(x – y) < x

-y < 0

Multiply by -1 to get:

y > 0

In this case, we will get 0 < y ≤ x.

Case 2: (x – y) < 0 (which implies x < y) and x ≥ 0

|x – y| < |x|

-(x – y) < x

2x > y

x > y/2

In this case, we will get 0 < y/2 < x < y.

Case 3: (x – y) ≥ 0 (which implies x ≥ y) and x < 0

|x – y| < |x|

(x – y) < -x

2x < y

x < y/2

In this case, we will get y ≤ x < y/2 < 0.

Case 4: (x – y) < 0 (which implies x < y) and x < 0

|x – y| < |x|

-(x – y) < -x

-x + y < -x

y < 0

In this case, we will get x < y < 0.

Considering all four cases, we get that both x and y are either positive or both are negative. Case 1 and Case 2 imply that if both x and y are positive, then x > y/2, and Case 3 and Case 4 imply that if both x and y are negative, then x < y/2. With these in mind, there is a range of values in which the inequality will hold. Both x and y should have the same sign – if they are both positive, x > y/2, and if they are both negative, x < y/2.

Here are some examples of values for which the inequality will hold:

x = 4, y = 5

x = 8, y = 2

x = -2, y = -1

x = -5, y = -6

etc.

Here are some examples of values for which the inequality will not hold:

x = 4, y = -5 (x and y have opposite signs)

x = 5, y = 15 (x is not greater than y/2)

x = -5, y = 9 (x and y have opposite signs)

x = -6, y = -14 (x is not less than y/2)

etc.

As said before, don’t worry about going through this method during the actual GMAT exam – if you do get a similar question, some strategies such as plugging in values and/or using answer choices to your advantage will work. Overall, this example hopefully helped you understand absolute values a little better.

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Understanding Absolute Values with Two Variables appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: The Case of a Correct Answer Despite Incorrect Logic! appeared first on Veritas Prep Blog.

]]>Today, we will look at a question in which exactly this phenomenon occurs – we will find the flaw in the logic that test-takers often come up with and then learn how to correct that flaw:

*If a motorist had driven 1 hour longer on a certain day and at an average rate of 5 miles per hour faster, he would have covered 70 more miles than he actually did. How many more miles would he have covered than he actually did had he driven 2 hours longer and at an average rate of 10 miles per hour faster on that day?*

*(A) 100*

*(B) 120*

*(C) 140*

*(D) 150*

*(E) 160*

This little gem (and it’s detailed algebra solution) is from our *Advanced Word Problem*s book. We will post its solution here, too, for the sake of a comprehensive discussion:

**Method 1: Algebra**

Let’s start with the basic “Distance = Rate * Time” formula:

D = R*T ……….(I)

From here, the first theoretical trip can be represented as D + 70 = (R + 5)(T + 1), (the motorist travels for 1 extra hour at a rate of 5 mph faster), which can be expanded to D + 70 = RT + R + 5T +5.

We can then eliminate “D” by plugging in the value of “D” from our equation (I):

RT + 70 = RT + R + 5T + 5, which simplifies to 70 = R + 5T + 5 and then to 65 = R + 5T ……….. (II)

The second theoretical trip can be represented as (R+10)(T+2), which expands to RT + 2R + 10T + 20 (not that we only have an expression since we don’t know what the distance is).

The two middle terms (2R + 10T) can be factored to 2(R+5T), which allows us to use equation (II) here:

RT + 2(R+5T) + 20 = RT + 2(65) + 20 = RT + 150.

Since the original distance was RT, the additional distance is 150 more miles, or answer choice D.

We totally understand that this solution is a bit convoluted – algebra often is. So, understandably, students often look for a more direct logical solution.

Here is one they sometimes employ:

**Method 2: Logic (Incorrect)**

If the motorist had driven 1 hour longer at a rate 5 mph faster, then his original speed would be 70 miles subtracted by the extra 5 miles he drove in that hour to get 70 – 5 = 65 mph. If he drives at a rate 10 mph faster (i.e. at 65 + 10 = 75) * 2 for the extra hours, he/she would have driven 150 miles extra.

But here is the catch in this logic:

The motorist drove for an average rate of 5 mph extra. So the 70 includes not only the extra distance covered in the last hour, but also the extra 5 miles covered every hour for which he drove. Hence, his original speed is not 65. Now, let’s see the correct logical method of solving this:

**Method 3: Logic (Correct)**

Let’s review the original problem first. Say, speed is “S” mph – we don’t know the number of hours for which this speed was maintained.

STEP 1:

S + S + S + … + S + S = TOTAL DISTANCE COVERED

In the first hypothetical case, the motorist drove for an extra hour at a speed of 5 mph faster. This means he covered 5 extra miles every hour and then covered another S + 5 miles in the last hour. The underlined distances are the extra ones which all add up to 70.

STEP 2:

S + S + S + … + S + S = TOTAL DISTANCE COVERED

+5 +5 +5 + … + 5 + 5 = +70

In the second hypothetical case, in which the motorist drove for two hours longer at a speed of 10 mph faster, he adds another 5 mph to his hourly speed and covers yet another distance of “S” in the second extra hour. In addition to S, he also covers another 10 miles in the second extra hour. The additional distances are shown in red in the third case – every hour, the speed is 10 mph faster and he drove for two extra hours in this case (compared with Step 1).

STEP 3:

S + S + S + … + S + S + S + S = TOTAL DISTANCE COVERED

+5 +5 +5 + … +5 +5 +5 = +70

+5 +5 +5 + … +5 +5 +5 + 10 = +70 + 10

Note that the +5s and the S all add up to 70 (as seen in Step 2). We also separately add the extra 10 from the last hour. This is the logic of getting the additional distance of 70 + 70 + 10 = 150. It involves no calculations, but does require you to understand the logic. Therefore, our answer is still D.

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: The Case of a Correct Answer Despite Incorrect Logic! appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: How to Find Composite Numbers on the GMAT appeared first on Veritas Prep Blog.

]]>**Principle: Every composite number is made up of 2 or more prime numbers. The prime numbers could be the same or they could be distinct.**

For example:

2*2 = 4 (Composite number)

2*3*11 = 66 (Composite number)

5*23 = 115 (Composite number)

and so on…

Look at any composite number. You will always be able to split it into 2 or more prime numbers (not necessarily distinct). For example:

72 = 2*2*2*3*3

140 = 2*2*5*7

166 = 2*83

and so on…

This principle does look quite simple and intuitive at first, but when tested, we could face problems because we don’t think much about it. Let’s look at it with the help of one of our 700+ level GMAT questions:

*x is the smallest integer greater than 1000 that is not prime and that has only one factor in common with 30!. What is x?*

*(A) 1009*

*(B) 1021*

*(C) 1147*

*(D) 1273*

*(E) 50! + 1*

If we start with the answer choices, the way we often do when dealing with prime/composite numbers, we will get stuck. If we were looking for a prime number, we would use the method of elimination – we would find factors of all other numbers and the number that was left over would be the prime number.

But in this question, we are instead looking for a composite number – a specific composite number – and some of the answer choices are probably prime. Try as we might, we will not find a factor for them, and by the time we realize that it is prime, we will have wasted a lot of precious time. Let’s start from the question stem, instead.

We need a composite number that has only one factor in common with 30!. Every positive integer will have 1 as a factor, as will 30!, hence the only factor our answer and 30! will have in common is 1.

30! = 1*2*3*…*28*29*30

30! is the product of all integers from 1 to 30, so all prime numbers less than 30 are factors of 30!.

To make a composite number which has no prime factor in common with 30!, we must use prime numbers greater than 30. The first prime number greater than 30 is 31.

(As an aside, note that if we were looking for the smallest number with no factor other than 1 in common with 31!, we would skip to 37. All integers between 31 and 37 are composite and hence, would have factors lying between 1 and 31. Similarly, if we were looking for the smallest number with no factor other than 1 in common with 50!, 53 would be the answer.)

Let’s get back to our question. If we want to make a composite number without using any primes until 30, we must use two or more prime numbers greater than 30, and the smallest prime greater than 30 is 31. If we use two 31’s to get the smallest composite number, we get 31*31 = 961 But 961 is not greater than 1000, so it cannot be our answer.

So, let’s find the next prime number after 31 – it is 37. Multiplying 31 and 37, we get 31*37 = 1147. This is the smallest composite number greater than 1000 with no prime factors in common with 30! – the only factor it has in common with 30! is 1. Therefore, our answer is (C).

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: How to Find Composite Numbers on the GMAT appeared first on Veritas Prep Blog.

]]>