The post How to Solve “Hidden” Factor Problems on the GMAT appeared first on Veritas Prep Blog.

]]>But if tell you that I have a certain number of cupcakes and, were I so inclined, I could distribute the same number of cupcakes to each of 6 students with none left over or to each of 9 students with none left over, it’s the same concept, but I’m not telegraphing the subject in the same conspicuous manner as the previous question.

This kind of recognition comes in handy for questions like this one:

*All boxes in a certain warehouse were arranged in stacks of 12 boxes each, with no boxes left over. After 60 additional boxes arrived and no boxes were removed, all the boxes in the warehouse were arranged in stacks of 14 boxes each, with no boxes left over. How many boxes were in the warehouse before the 60 additional boxes arrived?*

(1) There were fewer than 110 boxes in the warehouse __before __the 60 additional arrived.

(2) There were fewer than 120 boxes in the warehouse __after__ the 60 additional arrived.

Initially, we have stacks of 12 boxes with no boxes left over, meaning we could have 12 boxes or 24 boxes or 36 boxes, etc. This is when you want to recognize that we’re dealing with a multiple/factor question. That first sentence tells you that the number of boxes is a multiple of 12. After 60 more boxes were added, the boxes were arranged in stacks of 14 with none left over – after this change, the number of boxes is a multiple of 14.

Because 60 is, itself, a multiple of 12, the new number must remain a multiple of 12, as well. [If we called the old number of boxes 12x, the new number would be 12x + 60. We could then factor out a 12 and call this number 12(x + 5.) This number is clearly a multiple of 12.] Therefore the new number, after 60 boxes are added, is a multiple of both 12 and 14. Now we can find the least common multiple of 12 and 14 to ensure that we don’t miss any possibilities.

The prime factorization of 12: 2^2 * 3

The prime factorization of 14: 2 * 7

The least common multiple of 12 and 14: 2^2 * 3 * 7 = 84.

We now know that, after 60 boxes were added, the total number of boxes was a multiple of 84. There could have been 84 boxes or 168 boxes, etc. And before the 60 boxes were added, there could have been 84-60 = 24 boxes or 168-60 = 108 boxes, etc.

A brief summary:

After 60 boxes were added: 84, 168, 252….

Before 60 boxes were added: 24, 108, 192….

That feels like a lot of work to do before even glancing at the statements, but now look at how much easier they are to evaluate!

Statement 1 tells us that there were fewer than 110 boxes before the 60 boxes were added, meaning there could have been 24 boxes to start (and 84 once 60 were added), or there could have been 108 boxes to start (and 168 once 60 were added). Because there are multiple potential solutions here, Statement 1 alone is not sufficient to answer the question.

Statement 2 tells us that there were fewer than 120 boxes after 60 boxes were added. This means there could have been 84 boxes – that’s the only possibility, as the next number, 168, already exceeds 120. So we know for a fact that there are 84 boxes after 60 were added, and 24 boxes before they were added. Statement 2 alone is sufficient, and the answer is B.

Takeaway: questions that look strange or funky are always testing concepts that have been tested in the past – otherwise, the exam wouldn’t be standardized. By making these connections, and recognizing that a verbal clue such as “none left over” really means that we’re talking about multiples and factors, we can recognize even the most abstract patterns on the toughest of GMAT questions.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post How to Solve “Hidden” Factor Problems on the GMAT appeared first on Veritas Prep Blog.

]]>The post GMAT Probability Practice: Questions and Answers appeared first on Veritas Prep Blog.

]]>You may already know that there are certain formulas that can help solve GMAT probability questions, but there is more to these problems than teasing out the right answers. Take a look at some advice on how to tackle GMAT probability questions to calm your fears about the test:

**Probability Formulas**

As you work through GMAT probability practice questions, you will need to know a few formulas. One key formula to remember is that the probability equals the number of desired outcomes divided by the number of possible outcomes. Another formula deals with discrete events and probability – that formula is P(A and B) = P(A)*P(B). Figuring out the probability of an event not occurring is one minus the probability that the event will occur. Putting these formulas into practice is the most effective way to remember them.

**Is it Enough to Know the Basic Formulas for Probability?**

Some test-takers believe that once you know the formulas related to probability for GMAT questions, then you have the keys to success on this portion of the test. Unfortunately, that is not always the case. The creators of the GMAT are not just looking at your ability to plug numbers into formulas – you must understand what each question is asking and why you arrived at a particular answer. Successful business executives use reason and logic to arrive at the decisions they make. The creators of the GMAT want to see how good you are at using these same tools to solve problems.

**The Value of Practice Exams**

Taking a practice GMAT can help you determine your skill level when it comes to probability questions and problems on every other section of the test. Also, a practice exam gives you the chance to become accustomed to the amount of time you’ll have to finish the various sections of the test.

At Veritas Prep, we have one free GMAT practice test available to anyone who wants to get an idea of how prepared they are for the test. After you take the practice test, you will receive a score report and thorough performance analysis that lets you know how you fared on each section. Your performance analysis can prove to be one of the most valuable resources you have when starting to prepare for the GMAT. Follow-up practice tests can be just as valuable as the first one you take. These tests reveal your progress on probability problems and other skills on the GMAT. The results can guide you on how to adjust your study schedule to focus more time on the subjects that need it.

**Getting the Right Kind of Instruction**

When it comes to probability questions, GMAT creators have been known to set subtle traps for test-takers. In some cases, you may happen upon a question with an answer option that jumps out at you as the right choice. This could be a trap.

If you study for the GMAT with Veritas Prep, we can teach you how to spot and avoid those sorts of traps. Our talented instructors have not only taken the GMAT; they have mastered it. Each of our tutors received a score that placed them in the 99th percentile. Consequently, if you study with Veritas Prep, you’ll benefit from the experience and knowledge of tutors who have conquered the GMAT. When it comes to probability questions, GMAT tutors at Veritas Prep have you covered!

In addition to providing you with effective GMAT strategies, tips, and top-quality instruction, we also give you choices regarding the format of your courses. We have prep classes that are given online and in person – learn your lessons where you want, and when you want. You may want to go with our private tutoring option and get a GMAT study plan that is tailored to your needs. Contact Veritas Prep today and dive into your GMAT studies!

*Getting ready to take the GMAT? We have **free online GMAT seminars** **running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!*

The post GMAT Probability Practice: Questions and Answers appeared first on Veritas Prep Blog.

]]>The post When to Pick Your Own Numbers on GMAT Quant Questions appeared first on Veritas Prep Blog.

]]>As luck would have it, on her previous practice exam she’d received the following problem, which both illustrates the value of picking numbers and demonstrates why this approach works so well.

*A total of 30 percent of the geese included in a certain migration study were male. If some of the geese migrated during the study and 20 percent of the migrating geese were male, what was the ratio of the migration rate for the male geese to the migration rate for the female geese? *

*[Migration rate for geese of a certain sex = (number of geese of that sex migrating) / (total number of geese of that sex)] *

A) 1/4

B) 7/12

C) 2/3

D) 7/8

E) 8/7

This is a perfect opportunity to break out two of my favorite GMAT tools: picking numbers and making charts. So, let’s say there are 100 geese in our population. That means that if 30% are male, we’ll have 30 male geese and 70 females geese, giving us the following chart:

Male | Female | Total | |

Migrating | |||

Not-Migrating | |||

Total | 30 | 70 | 100 |

Now, let’s say 10 geese were migrating. That means that 90 were not migrating. Moreover, if 20 percent of the migrating geese were male, we know that we’ll have 2 migrating males and 8 migrating females, giving us the following:

Male | Female | Total | |

Migrating | 2 | 8 | 10 |

Not-Migrating | |||

Total | 30 | 70 | 100 |

(Note that if we wanted to, we could fill out the rest of the chart, but there’s no reason to, especially when we’re trying to save as much time as possible.)

Our migration rate for the male geese is 2/30 or 1/15. Our migration rate for the female geese is 8/70 or 4/35. Ultimately, we want the ratio of the male migration rate (1/15) to the female migration rate (4/35), so we need to simplify (1/15)/(4/35), or (1*35)/(15*4) = 35/60 = 7/12. And we’re done – B is our answer.

My student was skeptical. How did we know that 10 geese were migrating? What if 20 geese were migrating? Or 50? Shouldn’t that change the result? This is the beauty of picking numbers – it doesn’t matter what number we pick (so long as we don’t end up with an illogical scenario in which, say, the number of migrating male geese is greater than the number of total male geese). To see why, watch what happens when we do this algebraically:

Say that we have a total of “t” geese. If 30% are male, we’ll have 0.30t male geese and 0.70t females geese. Now, let’s call the migrating geese “m.” If 20% are male, we’ll have 0.20m migrating males and 0.80m migrating females. Now our chart will look like this:

Male | Female | Total | |

Migrating | 0.20m | 0.80m | m |

Not-Migrating | |||

Total | 0.30t | 0.70t | t |

The migration rate for the male geese is 0.20m/0.30t or 2m/3t. The migration rate for the female geese is 0.80m/0.70t or 8m/7t. We want the ratio of the male migration rate (2m/3t) to the female migration rate (8m/7t), so we need to simplify (2m/3t)/(8m/7t) = (2m*7t)/(3t * 8m) = 14mt/24mt = 7mt/12mt = 7/12. It’s clear now why the numbers we picked for m and t don’t matter – they cancel out in the end.

Takeaway: We cannot say this enough: the GMAT is not testing your ability to do formal algebra. It’s testing your ability to make good decisions in a stressful environment. So your goal, when preparing for this test, isn’t to become a virtuoso mathematician, even for the toughest questions. It’s to practice the kind of simple creative thinking that will get you to your answer with the smallest investment of your time.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post When to Pick Your Own Numbers on GMAT Quant Questions appeared first on Veritas Prep Blog.

]]>The post How to Use Units Digits to Avoid Doing Painful Calculations on the GMAT appeared first on Veritas Prep Blog.

]]>The units digit of 130,467 * 367,569 would be the same as the units digit of 7*9, as only the units digits of the larger numbers are relevant in such a calculation. 7*9 = 63, so the units digit of 130,467 * 367,569 is 3. This is one of those concepts that is so simple and elegant that it seems too good to be true.

And yet, this simple, elegant rule comes into play on the GMAT with surprising frequency.

Take this question for example:

*If n is a positive integer, how many of the ten digits from 0 through 9 could be the units digit of n^3?*

*A) three*

*B) four*

*C) six*

*D) nine*

*E) ten*

Surely, you think, the solution to this question can’t be as simple as cubing the easiest possible numbers to see how many different units digits result. And yet that’s exactly what we’d do here.

1^3 = 1

2^3 = 8

3^3 = 27 à units 7

4^3 = 64 à units 4

5^3 = ends in 5 (Fun fact: 5 raised to any positive integer will end in 5.)

6^3 = ends in 6 (Fun fact: 6 raised to any positive integer will end in 6.)

7^3 = ends in 3 (Well 7*7 = 49. 49*7 isn’t that hard to calculate, but only the units digit matters, and 9*7 is 63, so 7^3 will end in 3.)

8^3 = ends in 2 (Well, 8*8 = 64, and 4*8 = 32, so 8^3 will end in 2.)

9^3 = ends in 9 (9*9 = 81 and 1 * 9 = 9, so 9^3 will end in 9.)

10^3 = ends in 0

Amazingly, when I cube all the integers from 1 to 10 inclusive, I get 10 different units digits. Pretty neat. The answer is E.

Of course, this question specifically invoked the term “units digit.” What are the odds of that happening? Maybe not terribly high, but any time there’s a painful calculation, you’d want to consider thinking about the units digits.

Take this question, for example:

*A certain stock exchange designates each stock with a one, two or three letter code, where each letter is selected from the 26 letters of the alphabet. If the letters may be replaced and if the same letters used in a different order constitute a different code, how many different stocks is it possible to uniquely designate with these codes? *

*A) 2,951
B) 8,125
C) 15,600
D) 16,302
E) 18,278 *

Conceptually, this one doesn’t seem that bad.

If I wanted to make a one-letter code, there’d be 26 ways I could do so.

If I wanted to make a two-letter code, there’d be 26*26 or 26^2 ways I could do so.

If I wanted to make a three-letter code, there’d be 26*26*26, or 26^3 ways I could so.

So the total number of codes I could make, given the conditions of the problem, would be 26 + 26^2 + 26^3. Hopefully, at this point, you notice two things. First, this arithmetic will be deeply unpleasant to do. Second, all of the answer choices have different units digits!

Now remember that 6 raised to any positive integer will always end in 6. So the units digit of 26 is 6, and the units digit of 26^2 is 6 and the units digit of 26^3 is also 6. Therefore, the units digit of 26 + 26^2 + 26^3 will be the same as the units digit of 6 + 6 + 6. Because 6 + 6 + 6 = 18, our answer will end in an 8. The only possibility here is E. Pretty nifty.

Takeaway: Painful arithmetic can always be avoided on the GMAT. When calculating large numbers, note that we can quickly find the units digit with minimal effort. If all the answer choices have different units digits, the question writer is blatantly telegraphing how to approach this problem.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post How to Use Units Digits to Avoid Doing Painful Calculations on the GMAT appeared first on Veritas Prep Blog.

]]>The post How to Approach Difficult GMAT Problems appeared first on Veritas Prep Blog.

]]>One of my main goals in teaching a class is to persuade everyone that this is not, in fact, how hard questions work on this test. Hard questions don’t ask you do to something you don’t know how to do. Rather, they’re cleverly designed to provoke an anxiety response that makes it difficult to realize that you do know exactly how to solve the problem.

Take this official question, for example:

*Let a, b, c and d be nonzero real numbers. If the quadratic equation ax(cx + d) = -b(cx +d) is solved for x, which of the following is a possible ratio of the 2 solutions?*

*A) **–ab/cd*

*B) –ac/bd*

*C) –ad/bc*

*D) ab/cd*

*E) ad/bc*

Most students see this and panic. Often, they’ll start by multiplying out the left side of the equation, see that the expression is horrible (acx^2 + adx), and take this as evidence that this question is beyond their skill level. And, of course, the question was designed to elicit precisely this response. So when I do this problem in class, I always start by telling my students, much to their surprise, that every one of them already knows how to do this. They’ve just succumbed to the question writer’s attempt to convince them otherwise.

So let’s start simple. I’ll write the following on the board: xy = 0. Then I’ll ask what we know about x or y. And my students shrug and say x or y (or both) is equal to 0. They’ll also wonder what on earth such a simple identity has to do with the algebraic mess of the question they’d been struggling with.

I’ll then write this: zx + zy = 0. Again, I’ll ask what we know about the variables. Most will quickly see that we can factor out a “z” and get z(x+y) = 0. And again, applying the same logic, we see that one of the two components of the product must equal zero – either z = 0 or x + y = 0.

Next, I’ll ask if they would approach the problem any differently if I’d given them zx = -zy – they wouldn’t.

Now it clicks. We can take our initial equation in the aforementioned problem: ax(cx +d) = -b(cx+d), and see that we have a ‘cx + d’ on both sides of the equation, just as we’d had a “z” on both sides of the previous example. If I’m able to get everything on one side of the equation, I can factor out the common term.

Now ax(cx +d) = -b(cx+d) becomes ax(cx +d) + b(cx+d) = 0.

Just as we factored out a “z” in the previous example, we can factor out “cx + d” in this one.

Now we have (cx + d)(ax + b) = 0.

Again, if we multiply two expressions to get a product of zero, we know that at least one of those expressions must equal 0. Either cx + d = 0 or ax + b = 0.

If cx + d = 0, then x = -d/c.

If ax + b = 0, then x = -b/a.

Therefore, our two possible solutions for x are –d/c and –b/a. So, the ratio of the two would simply be (-d/c)/(-b/a). Recall that dividing by a fraction is the equivalent of multiplying by the reciprocal, so we’re ultimately solving for (-d/c)(-a/b). Multiplying two negatives gives us a positive, and we end up with da/cb, which is equivalent to answer choice E.

Takeaway: Anytime you see something on the GMAT that you think you don’t know how to do, remind yourself that the question was designed to create this false impression. You know how to do it – don’t hesitate to dive in and search for how to apply this knowledge.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

The post How to Approach Difficult GMAT Problems appeared first on Veritas Prep Blog.

]]>The post How to Reach a 99th Percentile GMAT Score Using No New Academic Strategies appeared first on Veritas Prep Blog.

]]>His story is a fairly typical one: like the vast majority of GMAT test-takers, he enrolled in the class looking to hit a 700. His scores improved steadily throughout the course, and when he took the test the first time, he’d received a 720, which was in line with his last two practice exams. After he finished the official test, he called me – both because he was feeling pretty good about his score but also because a part of him was sure he could do better.

My feeling at the time was that there really wasn’t any pressing need for a retake: a 720 is a fantastic score, and once you hit that level of success, the incremental gains of an improvement begin to suffer from the law of diminishing returns. Still, when you’re talking about the most competitive MBA programs, you want any edge you can get. Moreover, he’d already made up his mind. He wanted to retake.

Part of his decision was rooted in principle. He was sure he could hit the 99^{th} percentile, and he wanted to prove it to himself. The problem, he noted, was that he’d already mastered the test’s content. So if there was nothing left for him to learn, how did he jump to the 99^{th} percentile?

The answer can be found in the vast body of literature enumerating the psychological variables that influence test scores. We like to think of tests as detached analytic tools that measure how well we’ve mastered a given topic. In reality, our mastery of the content is one small aspect of performance.

Many of us know this from experience – we’ve all had the experience of studying hard for a test, feeling as though we know everything cold, and then ending up with a score that didn’t seem to reflect how well we’d learned the material. After I looked at the research, it was clear that the two most important psychological variables were 1) confidence and 2) how well test-takers managed test anxiety. (And there’s every reason to believe that those two variables are interconnected.)

I’ve written in the past about how a mindfulness meditation practice can boost test day performance. I’ve also written about how perceiving anxiety as excitement, rather than as a nefarious force that needs to be conquered, has a similarly salutary effect. Recently I came across a pair of newer studies.

In one, researchers found that when students wrote in their journals for 10 minutes about their test-taking anxiety the morning of their exams, their scores went up substantially. In another, the social psychologist Amy Cuddy found that body language had a profound impact on performance in all sorts of domains. For example, her research has revealed that subjects who assumed “power poses” for two minutes before a job interview projected more confidence during the interview and were better able to solve problems than a control group that assumed more lethargic postures. (To see what these power poses look like, check out Cuddy’s fascinating Ted talk here.) Moreover, doing power poses actually created a physiological change, boosting testosterone and reducing the stress hormone Cortisol.

Though her research wasn’t targeted specifically at test-takers, there’s every reason to believe that there would be a beneficial effect for students who practiced power poses before an exam. Many teachers acquainted with Cuddy’s research now recommend that their students do this before tests.

So the missing piece of the puzzle for my student was simply confidence. His strategies hadn’t changed. His knowledge of the core concepts was the same. The only difference was his psychological approach. So now I’m recommending that all of my students do the following to cultivate an ideal mindset for producing their best possible test scores:

- Perform mindfulness meditation for the two weeks leading up to the exam.
- Reframe test-day anxiety as excitement.
- Spend 10 minutes the morning of the test writing in a journal.
- Practice two minutes of power poses in the waiting room before sitting for the exam and between the Quant and Verbal section.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

The post How to Reach a 99th Percentile GMAT Score Using No New Academic Strategies appeared first on Veritas Prep Blog.

]]>The post Don’t Swim Against the Arithmetic Currents on the GMAT Quant Section appeared first on Veritas Prep Blog.

]]>If there’s a benefit to fears, it’s that they serve as potent motivators to find solutions to the troubling predicaments that prompt them. The solution to dealing with riptides is to avoid struggling against the current. The water is more powerful than you are, so a fight is a losing proposition – rather, you want to wait for an opportunity to swim with the current and allow the surf to bring you back to shore. There’s a profound wisdom here that translates to many domains, including the GMAT.

In class, whenever we review a strategy, my students are usually comfortable applying it almost immediately. Their deeper concern is about *when* to apply the strategy, as they’ll invariably find that different approaches work with different levels of efficacy on different problems. Moreover, even if one has a good strategy in mind, the way the strategy is best applied is often context-dependent. When we’re picking numbers, we can say that x = 2 or x = 100 or x = 10,000; the key is not to go in with a single approach in mind. Put another way, don’t swim against the arithmetic currents.

Let’s look at some questions to see this approach in action:

*At a picnic there were 3 times as many adults as children and twice as many women as men. If there was a total of x men, women, and children at the picnic, how many men were there, in terms of x?*

*A) x/2*

*B) x/3*

*C) x/4*

*D) x/5*

*E) x/6*

The moment we see “x,” we can consider picking numbers. The key here is contemplating how complicated the number should be. Swim with the current – let the question tell you. A quick look at the answer choices reveals that x could be something simple. Ultimately, we’re just dividing this value by 2, 3, 4, 5, or 6.

Keeping this in mind, let’s think about the first line of the question. If there are 3 times as many adults as children, and we’re keeping things simple, we can say that there are 3 adults and 1 child, for a total of 4 people. So, x = 4.

Now, we know that among our 3 adults, there are twice as many women as men. So let’s say there are 2 women and 1 man. Easy enough. In sum, we have 2 women, 1 man, and 1 child at this picnic, and a total of 4 people. The question is how many men are there? There’s just 1! So now we plug x = 4 into the answers and keep going until we find x = 1. Clearly x/4 will work, so C is our answer. The key was to let the question dictate our approach rather than trying to impose an approach on the question.

Let’s try another one:

*Last year, sales at Company X were 10% greater in February than in January, 15% less in March than in February, 20% greater in April than in March, 10% less in May than in April, and 5% greater in June than in May. On which month were sales closes to the sales in January?*

*A) February*

*B) March*

*C) **April*

*D) **May*

*E) **June*

Great, you say. It’s a percent question. So you know that picking 100 is often a good idea. So, let’s say sales in January were 100. If we want the month when sales were closest to January’s level, we want the month when sales were closest to 100, Sales in February were 10% greater, so February sales were 110. (Remember that if sales increase by 10%, we can multiply the original number by 1.1. If they decrease by 10% we could multiply by 0.9, and so forth.)

So far so good. Sales in March were 15% less than in February. Well, if sales in Feb were 110, then the sales in March must be 110*(0.85). Hmm… A little tougher, but not insurmountable. Now, sales in April were 20% greater than they were in March, meaning that April sales would be 110*(0.85)*1.2. Uh oh. Once you see that sales are 10% less in May than they were in April, we know that sales will be 110*(0.85)*1.2*0.9.

Now you need to stop. Don’t swim against the current. The arithmetic is getting hard and is going to become time-consuming. The question asks which month is *closest to* 100, so we don’t have to calculate precise values. We can estimate a bit. Let’s double back and try to simplify month by month, keeping things as simple as possible.

Our February sales were simple: 110. March sales were 110*0.85 – an unpleasant number. So, let’s try thinking about this a little differently. 100*0.85 = 85. 10*0.85 = 8.5. Add them together and we get 85 + 8.5 = 93.5. Let’s make life easier on ourselves – we’ll round up, and call this number 94.

April sales are 20% more than March sales. Well, 20% of 100 is clearly 20, so 20% of 94 will be a little less than that. Say it’s 18. Now sales are up to 94 + 18 = 112. Still not close to 100, so we’ll keep going.

May sales are 10% less than April sales. 10% of 112 is about 11. Subtract 11 from 112, and you get 101. We’re looking for the number closest to 100, so we’ve got our answer – it’s D, May.

Takeaway: Don’t try to impose your will on GMAT questions. Use the structural clues of the problems to dictate how you implement your strategy, and be prepared to adjust midstream. The goal is never to conquer the ocean, but rather, to ride the waves to calmer waters.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

The post Don’t Swim Against the Arithmetic Currents on the GMAT Quant Section appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: Exit the GMAT Test Center…Don’t Brexit It appeared first on Veritas Prep Blog.

]]>And regardless of whether you side with Leave or Stay as it corresponds to the EU, if your goal is to Leave your job to Stay at a top MBA program in the near future, you’d be well-served to learn a lesson from those experiencing Brexit Remorse today.

How can the Brexit aftermath improve you GMAT score?

**Pregrets, Not Regrets** **(Yes, Brexiters…we can combine words too.)**

The first lesson is quite simple. Unlike those who returned home from the polls to immediately research “What should I have read up on beforehand?” you should make sure that you do your GMAT study *before* you get to the test center, not after you’ve (br)exited it with a score as disappointing as this morning’s Dow Jones.

But that doesn’t just mean, “Study before the test!” – an obvious tip. It also means, “**Anticipate the things you’ll wish you had thought about**.” Which means that you should go into the test center with list of “pregrets” and not leave the test center with a list of regrets.

Having “pregrets” means that you already know before you get to the test center what your likely regrets will be, so that you can fix them in the moment and not lament them after you’ve seen your score. Your list of pregrets should be a summary of the most common mistakes you’ve made on your practice tests, things like:

- On Data Sufficiency, I’d better not forget to consider negative numbers and nonintegers.
- Before I start doing algebra, I should check the answer choices to see if I can stop with an estimate.
- I always blank on the 30-60-90 divisibility rule, so I should memorize it one more time in the parking lot and write it down as soon as I get my noteboard.
- Reading Comprehension inferences must be true, so always look for proof.
- Slow down when writing 4’s and 7’s on scratchwork, since when I rush they tend to look too much alike.
- Check after every 10 questions to make sure I’m on a good pace.

Any mistakes you’ve made more than once on practice tests, any formulas that you know you’re apt to blank on, any reminders to yourself that “when X happens, that’s when the test starts to go downhill” – these are all items that you can plan for in advance. Your debriefs of your practice tests are previews of the real thing, so you should arrive at the test center with your pregrets in mind so that you can avoid having them become regrets.

Much like select English voters, many GMAT examinees can readily articulate, “I should have read/studied/prepare for _____” within minutes of completing their exam, and very frequently, those elements are not a surprise. So anticipate in the hour/day before the test what your regrets might be in the hours/days immediately following the test, and you can avoid that immediate remorse.

**Double Cheque Your Work**

Much like a Brexit vote, you only get one shot at each GMAT problem, and then the results lead to consequences. But the GMAT gives you a chance to save yourself from yourself – you have to both select your answer and confirm it. So, unlike those who voted and then came home to Google asking, “Did I do the right thing?” you should ask yourself that question* before* you confirm your answer. Again, your pregrets are helpful. Before you submit your answer, ask yourself:

- Did I solve for the proper variable?
- Does this number make logical sense?
- Does this answer choice create a logical sentence when I read it back to myself?
- Does this Inference answer
*have to*be true, or is there a chance it’s not? - Am I really allowed to perform that algebraic operation? Let me try it with small numbers to make sure…

There will, of course, be some problems on the GMAT that you simply don’t know how to do, and you’ll undoubtedly get some problems wrong. But for those problems that you really should have gotten right, the worst thing that can happen is realizing a question or two later that you blew it.

Almost every GMAT examinee can immediately add 30 points to his score by simply taking back those points he would have given away by rushing through a problem and making a mistake he’d be humiliated to know he made. So, take that extra 5-10 seconds on each question to double check for common mistakes, even if that means you have to burn a guess later in the section. If you minimize those mistakes on questions within your ability level, that guess will come on a problem you should get wrong, anyway.

Like a Brexit voter, the best you can do the day before and day of your important decision-making day is to prepare to make the best decisions you can make. If you’re right, you’re right, and if you’re wrong, you’re wrong, and you may never know which is which (the GMAT won’t release your questions/answers and the Brexit decision will take time to play out). The key is making sure that you don’t leave with immediate regrets that you made bad decisions or didn’t take the short amount of time to prepare yourself for better ones. Enter the test center with pregrets; don’t Brexit it with regrets.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: Exit the GMAT Test Center…Don’t Brexit It appeared first on Veritas Prep Blog.

]]>The post How to Simplify Percent Questions on the GMAT appeared first on Veritas Prep Blog.

]]>When I introduce this topic, I’ll typically start by asking my class the following question: *If you’ve completed 10% of a project how much is left to do?* I have never, in all my years of teaching, had a class that was unable to tell me that 90% of the project remains. It’s more likely that they’ll react as though I’m insulting their collective intelligence. And yet, when test-takers see this concept under pressure, they’ll often fail to recognize it.

Take the following question, for example:

*Dara ran on a treadmill that had a readout indicating the time remaining in her exercise session. When the readout indicated 24 min 18 sec, she had completed 10% of her exercise session. The readout indicated which of the following when she had completed 40% of her exercise session. *

*(A) 10 min. 48 sec.*

*(B) 14 min. 52 sec.*

*(C) 14 min. 58 sec.*

*(D) **16 min. 6 sec.*

*(E) 16 min. 12 sec.*

Hopefully, you’ve noticed that this question is testing the same simple concept that I use when introducing percent problems to my class. And yet, in my experience, a solid majority of students are stumped by this problem. The reason, I suspect, is twofold. First, that figure – 24 min. 18 sec. – is decidedly unfriendly. Painful math often lends itself to careless mistakes and can easily trigger a panic response. Second, anxiety causes us to work faster, and when we work faster, we’re often unable to recognize patterns that would be clearer to us if we were calm.

There’s interesting research on this. Psychologists, knowing that the color red prompts an anxiety response and that the color blue has a calming effect, conducted a study in which test-takers had to answer math questions – the questions were given to some subjects on paper with a red background and to other subjects on paper with a blue background. (The control group had questions on standard white paper.) The red anxiety-producing background noticeably lowered scores and the calming blue background boosted scores.

Now, the GMAT doesn’t give you a red background, but it does give you unfriendly-seeming numbers that likely have the same effect. So, this question is as much about psychology as it is about mathematical proficiency. Our job is to take a deep breath or two and rein in our anxiety before we proceed.

If Dara has completed 10% of her workout, we know she has 90% of her workout remaining. So, that 24 min. 18 sec. presents 90% of her total workout. If we designate her total workout time as “t,” we end up with the following equation:

24 min. 18 sec. = 0.90t

Let’s work with fractions to solve. 18 seconds is 18/60 minutes, which simplifies to 3/10 minutes. 0.9 is 9/10, so we can rewrite our equation as:

24 + 3/10 = (9/10)t

(243/10) = (9/10)t

(243/10)*(10/9) = t

27 = t

Not so bad. Dara’s full workout is 27 minutes long.

We want to know how much time is remaining when Dara has completed 40% of her workout. Well, if she’s completed 40% of her workout, we know she has 60% of her workout remaining. If her full workout is 27 minutes, then 60% of this value is 0.60*27 = (3/5)*27 = 81/5 = 16 + 1/5, or 16 minutes 12 seconds. And we’ve got our answer: E.

Now, let’s say you get this problem with 20 seconds remaining on the clock and you simply don’t have time to solve it properly. Let’s estimate.

Say, instead of 24 min 18 seconds remaining, Dara had 24 minutes remaining (so we know we’re going to underestimate the answer). If that’s 90% of her workout time, 24 = (9/10)t, or 240/9 = t.

We want 60% of this, so we want (240/9)*(3/5).

Because 240/5 = 48 and 9/3 = 3, (240/9)*(3/5) = 48/3 = 16.

We know that the correct answer is over 16 minutes and that we’ve significantly underestimated – makes sense to go with E.

Takeaway: Don’t let the question-writer trip you up with figures concocted to make you nervous. Take a breath, and remember that the concepts being tested are the same ones that, when boiled down to their essence, are a breeze when we’re calm.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

The post How to Simplify Percent Questions on the GMAT appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: The Least Helpful Waze To Study appeared first on Veritas Prep Blog.

]]>And chances are that you’ve also, at some point or another, been inconvenienced by Waze, whether by a devout user cutting blindly across several lanes to make a suggested turn, by the app requiring you to cut through smaller streets and alleys to save a minute, or by Waze users turning your once-quiet side street into the Talladega Superspeedway.

To its credit, Waze is correcting one of its most common user complaints – that it often leads users into harrowing and time-consuming left turns. But another major concern still looms, and it’s one that could damage both your fender and your chances on the GMAT:

**Beware the shortcuts and “crutches” that save you a few seconds, but in doing so completely remove all reasoning and awareness.**

With Waze, we’ve all seen it happen: someone so beholden to, “I must turn left on 9th Street because the app told me to!” will often barrel through two lanes of traffic – with no turn signal – to make that turn…not realizing that the trip would have taken the exact same amount of time, with much less risk to the driver and everyone else on the road, had he waited a block or two to safely merge left and turn on 10th or 11th. By focusing so intently on the app’s “don’t worry about paying attention…we’ll tell you when to turn” features, the driver was unaware of other cars and of earlier opportunities to safely make the merge in the desired direction.

The GMAT offers similar pitfalls when examinees rely too heavily on “turn your brain off” tricks and techniques. As you learn and practice them, strategies like the “plumber butt” for rates and averages may seem quick, easy, and “turn your brain off” painless. But the last thing you want to do on a higher-order thinking test like the GMAT is completely turn your brain off. For example, a “turn your brain off” rate problem might say:

*John drives at an average rate of 45 miles per hour. How many miles will he drive in 2.5 hours?*

And using a Waze-style crutch, you could remember that to get distance you multiply time by rate so you’d get 112.5 miles. That may be a few seconds faster than performing the algebra by thinking “Rate = Distance over Time”; 45 = D/2.5; 45(2.5) = D; D = 112.5.

But where a shortcut crutch saves you time on easier problems, it can leave you helpless on longer problems that are designed to make you think. Consider this Data Sufficiency example:

*A factory has three types of machines – A, B, and C – each of which works at its own constant rate. How many widgets could one machine A, one Machine B, and one Machine C produce in one 8-hour day?*

*(1) 7 Machine As and 11 Machine Bs can produce 250 widgets per hour*

*(2) 8 Machine As and 22 Machine Cs can produce 600 widgets per hour*

Here, simply trying to plug the information into a simple diagram will lead you directly to choice E. You simply cannot separate the rate of A from the rate of B, or the rate of B from the rate of C. It will not fit into the classic “rate pie / plumber’s butt” diagram that many test-takers use as their “I hate rates so I’ll just do this trick instead” crutch.

However, those who have their critical thinking mind turned on will notice two things: that choice E is kind of obvious (the algebra doesn’t get you very close to solving for any one machine’s rate) so it’s worth pressing the issue for the “reward” answer of C, and that if you simply arrange the algebra there are similarities between the number of B and of C:

7(Rate A) + 11(Rate B) = 250

8(Rate A) + 22(Rate C) = 600

Since 11 is half of 22, one way to play with this is to double the first equation so that you at least have the same number of Bs as Cs (and remember…those are the only two machines that you don’t have “together” in either statement, so relating one to the other may help). If you do, then you have:

14(A) + 22(B) = 500

8(A) + 22(C) = 600

Then if you sum the questions (Where does the third 22 come from? Oh, 14 + 8, the coefficients for A.), you have:

22A + 22B + 22C = 1100

So, A + B + C = 50, and now you know the rate for one of each machine. The two statements together are sufficient, but the road to get there comes from awareness and algebra, not from reliance on a trick designed to make easy problems even easier.

The lesson? Much like Waze, which can lead to lack-of-awareness accidents and to shortcuts that dramatically up the degree of difficulty for a minimal time savings, you should take caution when deciding to memorize and rely upon a knee-jerk trick in your GMAT preparation.

Many are willing (or just unaware that this is the decision) to sacrifice mindfulness and awareness to save 10 seconds here or there, but then fall for trap answers because they weren’t paying attention or become lost when problems are more involved because they weren’t prepared.

So, be choosy in the tricks and shortcuts you decide to adopt! If a shortcut saves you a minute or two of calculations, it’s worth the time it takes to learn and master it (but probably never worth completely avoiding the “long way” or knowing the general concept). But if its time savings are minimal and its grand reward is that, “Hey, you don’t have to understand math to do this!” you should be wary of how well it will serve your aspirations of scores above around 600.

Don’t let these slick shortcut waze of avoiding math drive you straight into an accident. Unless the time savings are game-changing, you shouldn’t make a trade that gains you a few seconds of efficiency on select, easier problems in exchange for your awareness and understanding.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: The Least Helpful Waze To Study appeared first on Veritas Prep Blog.

]]>