The post GMAT Tip of the Week: Gary Johnson, Aleppo, and What To Do When Your Mind Goes Blank appeared first on Veritas Prep Blog.

]]>In pressure situations, it’s not uncommon for your brain to fail you as you “blank” on a concept you know (or should know). So it’s important to have strategies ready for that moment that very well may come to you. To paraphrase the Morning Joe question to Johnson:

What would you do about “Aleppo?”

Meaning: what would you do if your mind were to go blank on an important GMAT rule or formula?

There are four major strategies that should be in your toolkit for such a situation:

**1) Test Small Numbers**

You should absolutely know formulas like exponent rules or relationships like that between dividend, divisor, and remainder in division, but sometimes your mind just goes blank. In those cases, remember that math rules are logically-derived, not arbitrarily ordained! Math rules will hold for all possible values, so if you’re unsure, test numbers. For example, if you’re forced to solve something like:

*(x^15)(x^9) =*

And you’ve blanked on what to do with exponents, try testing small numbers like (2^2)(2^3). Here, that’s (4)(8) = 32, which is 2^5. So if you’re unsure, “Do I add or multiply the exponents?” you should see from the small example that you definitely don’t multiply, and that your hunch that, “Maybe I add?” works in this case, so you can more confidently make that decision.

Similarly, if a problem asked:

*When integer y is divided by integer z, the quotient is equal to x. Which of the following represents the remainder in terms of x, y, and z?*

*(A) x – yz*

* (B) zy – x*

* (C) y – zx*

* (D) zy – x*

* (E) zx – y*

Many students memorize equations to organize dividend, divisor, quotient, and remainder, but in the fog of war on test day it can even be difficult to remember which element of the division problem is the dividend (it’s the number you start with) and which is the divisor (it’s the one you divide by). So if your mind has blanked on any part of the equation or on which element is which, just test it with small numbers to remind yourself how the concept works:

11 divided by 4 is 2 with a remainder of 3. How do you get to the remainder? You take the 11 you started with and subtract the 8 that you get from taking the divisor of 4 and multiplying it by the quotient of 2. So the answer is y (what you started with) minus zx (the divisor times the quotient), or answer choice C.

Simply put, if you blank on a rule or concept, you can test small numbers to remind yourself how it works.

**2) Use Process of Elimination and Work Backwards From the Answer Choices**

One beautiful thing about the GMAT is that, while in “the real world” if you need to know the Pythagorean Theorem and blank on it, you’re out of luck (well, unless you have a Google-enabled Smartphone in your pocket which you almost certainly do…), on the GMAT you have answer choices as assets. So if your own work stalls in progress, you can look to the answer choices to eliminate options you know for sure you wouldn’t get with that math:

What is x^5 + x^6? You know you don’t add or multiply those exponents, so even if you don’t see to factor out the common x^5, you could eliminate answer choices like x^11 and x^30.

Or you can look to the answer choices to see if they help you determine how you’d apply a rule. For example, if a problem forces you to employ the side ratios for a 45-45-90 triangle and you’ve forgotten them, the presence of some square roots of 2 in the answer choices can help you remember. The square root of 2 is greater than 1, and two sides must match, so if someone spots you “the rule includes a square root of 2” the only thing it can really be is the ratio x : x : x(√2)

Gary Johnson should have been so lucky – had the question been posed as, “What would you do about Aleppo, which is either a DJ on the new Drake album; the epicenter of the Syrian crisis; or a new restaurant in the Garment District?” he would get that question right every single time. Answer choices are your friends…when you blank, consult them!

**3) Think Logically**

Similar to that 45-45-90 “what else could it be?” logic, many times when you blank on a rule, you can work your way to either the rule itself or just to the answer by thinking logically about it. For example, if you end up with math that includes a radical sign in the denominator and can’t quite remember the steps for rationalizing the denominator:

*What is 1/(1 – √2)?*

*(A) √2*

* (B) 1 – √2*

* (C) 1 + √2*

* (D) -1 – √2*

* (E) √2 – 1*

Not all is lost! Sure, algebraically you should multiply the numerator and the denominator by the conjugate (1 + *√*2) but you can also logically work with this one. The numerator is 1, and the denominator is 1 – the square root of 2. You know that *√*2 is between 1 and 2, so what do you know about the denominator? It’s negative, and it’s a fraction (or decimal), so once you’ve taken 1 divided by that, your answer must be a negative number to the left of -1 – only answer choice D would work. So, yeah, you blanked on the steps, but you can still employ logic to back into the answer.

**4) Write Down Everything You Know**

Blanking is particularly troublesome because it’s that moment of panic. You’re trying to retrace your mental steps and the answer is elusive; it’s a moment you’re not in control of at that point. So take control! The more you’re actively working – jotting down other related formulas or facts you know, working on other facets of the diagram or problem and saving that step for last, etc. – the more you’re controlling, or at least actively managing, the situation.

Gary Johnson couldn’t get away with a “Who Wants to Be a Millionaire?” style talk-through-it (“Um, I know it’s not the name of any congressmen; it’s not Zika, it’s not…”) without looking dumb, but no one is going to audit your scratchwork and release it to *Huffington Post*, so you’re free to jot down half-baked thoughts and trial calculations to your heart’s content. Actively manage the situation, and you can work your way through that dreaded “my mind is blank” moment.

So learn from Gary Johnson. No matter how much you’ve prepared for your GMAT, there’s a chance that your mind will go blank on something you know that you know, but just can’t recall in the moment. But you have options, so heed the wisdom above, and let Trump or Clinton handle the gaffes for the day while you move on confidently to the next question.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: Gary Johnson, Aleppo, and What To Do When Your Mind Goes Blank appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: 6 Reasons That Your Test Day Won’t Be A Labor Day appeared first on Veritas Prep Blog.

]]>What does that mean?

On a timed test like the GMAT, one of the biggest drains on your score can be a combination of undue time and undue energy spent on problems that could be done much simpler. “The long way is the wrong way” as a famous GMAT instructor puts it – those seconds you waste, those extra steps that could lead to error or distraction, they’ll add up over the test and pull your score much lower than you’d like it to be. With that in mind, here are six ways to help you avoid too much labor on test day:

QUANTITATIVE SECTION

**1) Do the math in your order, only when necessary.**

Because the GMAT doesn’t allow a calculator, it heavily rewards candidates who can find efficient ways to avoid the kind of math for which you’d need a calculator. Very frequently this means that the GMAT will tempt you with calculations that you’d ordinarily just plug-and-chug with a calculator, but that can be horribly time-consuming once you start.

For example, a question might require you to take an initial number like 15, then multiply by 51, then divide by 17. On a calculator or in Excel, you’d do exactly that. But on the GMAT, that calculation gets messy. 15*51 = 765 – a calculation that isn’t awful but that will take most people a few steps and maybe 20 seconds. But then you have to do some long division with 17 going into 765. Or do you? If you’re comfortable using factors, multiples, and reducing fractions, you can see those two steps (multiply by 51, divide by 17) as one: multiply by 51/17, and since 51/17 reduces to 3, then you’re really just doing the calculation 15*3, which is easily 45.

The lesson? For one, don’t start doing ugly math until you absolutely know you have to perform that step. Save ugly math for later, because the GMAT is notorious for “rescuing” those who are patient enough to wait for future steps that will simplify the process. And, secondly, get really, really comfortable with factors and divisibility. Quickly recognizing how to break a number into its factors (51 = 3*17; 65 = 5*13; etc.) allows you to streamline calculations and do much of the GMAT math in your head. Getting to that level of comfort may take some labor, but it will save you plenty of workload on test day.

**2) Recognize that “Answers Are Assets.”**

Another way to avoid or shortcut messy math is to look at the answer choices first. Some problems might look like they involve messy algebra, but can be made much easier by plugging in answer choices and doing the simpler arithmetic. Other times, the answer choices will lead themselves to process of elimination, whether because some choices do not have the proper units digit, or are clearly too small.

Still others will provide you with clues as to how you have to attack the math. For example, if the answer choices are something like: A) 0.0024; B) 0.0246; C) 0.246; D) 2.46; E) 24.6, they’re not really testing you on your ability to arrive at the digits 246, but rather on where the decimal point should go (how many times should that number be multiplied/divided by 10). You can then set your sights on the number of decimal places while not stressing other details of the calculation.

Whatever you do, always scan the answer choices first to see if there are easier ways to do the problem than to simply slog through the math. The answers are assets – they’re there for a reason, and often, they’ll provide you with clues that will help you save valuable time.

**3) Question the Question – Know where the game is being played.**

Very often, particularly in Data Sufficiency, the GMAT Testmaker will subtly provide a clue as to what’s really being tested. And those who recognize that can very quickly focus on what matters and not get lost in other elements of the problem.

For example, if the question stem includes an inequality with zero (x > 0 or xy < 0), there’s a very high likelihood that you’re being tested on positive/negative number properties. So, when a statement then says something like “1) x^3 = 1331”, you can hold off on trying to take the cube root of 1331 and simply say, “Odd exponent = positive value, so I know that x is positive,” and see if that helps you answer the question without much calculation. Or if the problem asks for the value of 6x – y, you can say to yourself, “I may not be able to solve for x and y individually, but if not, let’s try to isolate exactly that 6x – y term,” and set up your algebra accordingly so that you’re efficiently working toward that specific goal.

Good test-takers tend to see “where the game is being played” by recognizing what the Testmaker is testing. When you can see that a question is about number properties (and not exact values) or a combination of values (and not the individual values themselves) or a comparison of values (again, not the actual values themselves), you can structure your work to directly attack the question and not fall victim to a slog of unnecessary calculations.

VERBAL SECTION

**4) Focus on keywords in Critical Reasoning conclusions.**

The Verbal section simply *looks* time-consuming because there’s so much to read, so it pays to know where to spend your time and focus. The single most efficient place to spend time (and the most disastrous if you don’t) is in the conclusion of a Strengthen or Weaken question. To your advantage, noticing a crucial detail in a conclusion can tell you exactly “where the game is being played” (Oh, it’s not how much iron, it’s iron PER CALORIE; it’s not that Company X needs to reduce costs overall, it’s that it needs to reduce SHIPPING costs; etc.) and help you quickly search for the answer choices that deal with that particular gap in logic.

On the downside, if you don’t spend time emphasizing the conclusion, you’re in trouble – burying a conclusion-limiting word or phrase (like “per calorie” or “shipping”) in a long paragraph can be like hiding a needle in a haystack. The Testmaker knows that the untrained are likely to miss these details, and have created trap answers (and just the opportunity to waste time re-reading things that don’t really matter) for those who fall in that group.

**5) Scan the Sentence Correction answer choices before you dive into the sentence.**

Much like “Answers are Assets” above, a huge help on Sentence Correction problems is to scan the answer choices quickly to see if you can determine where the game is being played (Are they testing pronouns? Verb tenses?). Simply reading a sentence about a strange topic (old excavation sites, a kind of tree that only grows on the leeward slopes of certain mountains…) and looking for anything that strikes you as odd or ungrammatical, that takes time and saps your focus and energy.

However, the GMAT primarily tests a handful of concepts over and over, so if you recognize what is being tested, you can read proactively and look for the words/phrases that directly control that decision you’re being asked to make. Do different answers have different verb tenses? Look for words that signal time (before, since, etc.). Do they involve different pronouns? Read to identify the noun in question and determine which pronoun it needs. You’re not really being tasked with “editing the sentence” as much as your job is to make the proper decision with the choices they’ve already given you. They’ve already narrowed the scope of items you can edit, so identify that scope before you take out the red marking pen across the whole sentence.

**6) STOP and avoid rereading.**

As the Veritas Prep Reading Comprehension lesson teaches, stop at the end of each paragraph of a reading passage to ask yourself whether you understand Scope, Tone, Organization, and Purpose. The top two time-killers on Reading Comprehension passages/problems are re-reading (you get to the end and realize you don’t really know what you just read) and over-reading (you took several minutes absorbing a lot of details, but now the clock is ticking louder and you haven’t looked at the questions yet).

STOP will help you avoid re-reading (if you weren’t locked in on the first paragraph, you can reread that in 30 seconds and not wait to the end to realize you need to reread the whole thing) and will give you a quick checklist of, “Do I understand just enough to move on?” Details are only important if you’re asked about them, so focus on the major themes (Do you know what the paragraph was about – a quick 5-7 word synopsis is perfect – and why it was written? Good.) and save the details for later.

It may seem ironic that the GMAT is set up to punish hard-workers, but in business, efficiency is everything – the test needs to reward those who work smarter and not just harder, so an effective test day simply cannot be a Labor Day. Use this Labor Day weekend to study effectively so that test day is one on which you prioritize efficiency, not labor.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: 6 Reasons That Your Test Day Won’t Be A Labor Day appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: The EpiPen Controversy Highlights An Allergic Reaction You May Have To GMAT Critical Reasoning appeared first on Veritas Prep Blog.

]]>But perhaps only a pre-MBA blog could take the stance “but what is Mylan’s goal?” and expect the overwhelming-and-enthusiastic response “Maximize Shareholder Value! (woot!)” Regardless of your opinion on the EpiPen issue, you can take this opportunity to learn a valuable lesson for GMAT Critical Reasoning questions:

**When a Critical Reasoning asks you to strengthen or weaken a plan or strategy, your attention MUST be directed to the specific goal being pursued.**

Here’s where this can be dangerous on the GMAT. Consider a question that asked:

*Consumer advocates and doctors alike have recently become outraged at the activities of pharmaceutical company Mylan. In an effort to leverage its patent to maximize shareholder value, Mylan has decided to increase the price of its signature EpiPen product sixfold over the last few years. The EpiPen is a product that administers a jolt of epinephrine, a chemical that can open airways and increase the flow of blood in someone suffering from a life-threatening allergic reaction.*

*Which of the following, if true, most constitutes a reason to believe that Mylan’s strategy will not accomplish the company’s goals?*

*(A) The goal of a society should be to protect human life regardless of expense or severity of undertaking.*

*(B) Allergic reactions are often fatal, particularly for young children, unless acted on quickly with the administration of epinephrine, a product that is currently patent-protected and owned solely by Mylan.*

*(C) Computer models predict that, at current EpiPen prices, most people will hold on to their EpiPens well past the expiration date, leading to their deaths and inability to purchase future EpiPens.*

Your instincts as a decent, caring human being leave you very susceptible to choosing A or B. You care about people with allergies – heck, you or a close friend/relative might be one of them – and each of those answer choices provides a reason to join the outcry here and think, “Screw you, Mylan!”

But, importantly for your chances of becoming a profit-maximizing CEO via a high GMAT score, you must note this: neither directly weakens the likelihood of Mylan “leveraging its patent to maximize shareholder value,” and that is the express goal of this strategy. As stated in the argument, that is the only goal being pursued here, so your answer must focus directly on that goal. And as horrible as it is to think that this might be the thought process in a corporate boardroom, choice C is the only one that suggests that this strategy might lead to lesser profits (first they buy the product less often, then they can’t buy it ever again; fewer units sold could equal lower profit).

The lesson here? Beware “plan/strategy” answer choices that allow you to tangentially address the situation in the argument, particularly when you know that you’re likely to have an opinion of some sort on the topic matter itself. Instead, completely digest the specifics of the stated goal, and make sure that the answer you choose is directly targeted at the objective. Way too often on these problems, students insert themselves in the larger topic and lose sight of the specific goal, falling victim to the readily available trap answers.

So give your GMAT score a much-needed shot of Critical Reasoning epinephrine – focus on the specifics of the plan, and save your tangential angst for the social media where it belongs.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: The EpiPen Controversy Highlights An Allergic Reaction You May Have To GMAT Critical Reasoning appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: The Power of Deduction on GMAT Data Sufficiency Questions appeared first on Veritas Prep Blog.

]]>We know that the total number of factors of a number A (prime factorised as X^p * Y^q *…) is given by (p+1)*(q+1)… etc.

So, if we know that a number has, say, 6 total factors, what can we say about the number?

6 = (p+1)*(q+1) = 2*3, so p = 1 and q = 2 or vice versa.

A = X^1 * Y^2 where X and Y are distinct prime numbers.

Today, we will look at a data sufficiency question in which we can use factors to deduce much more information than what we might first guess:

*When the digits of a two-digit, positive integer M are reversed, the result is the two-digit, positive integer N. If M > N, what is the value of M?*

*Statement 1: The integer (M – N) has 12 unique factors.*

*Statement 2: The integer (M – N) is a multiple of 9.*

With this question, we are told that M is a two-digit integer and N is obtained by reversing it. So if M = 21, then N = 12; if M = 83, then N = 38 (keeping in mind that M must be greater than N). In the generic form:

M = 10a + b and N =10b + a (where a and b are single-digit numbers from 1 to 9. Neither can be 0 or greater than 9 since both M and N are two-digit numbers.)

We also know that no matter what M and N are, M > N. Therefore:

10a + b > 10b + a

9a > 9b

a > b

Let’s examine both of our given statements:

*Statement 1: The integer (M – N) has 12 unique factors.*

First, let’s figure out what M – N is:

M – N = (10a + b) – (10b + a) = 9a – 9b

Say M – N = A. This would mean A = 9(a-b) = 3^2 * (a-b)

The total number of factors of A where A = X^p * Y^q *… can be calculated using the formula (p+1)*(q+1)* …

We know that A has 3^2 as a factor, so X = 3 and p = 2. Therefore, the total number of factors would be (2+1)*(q+1)*… = 3*(q+1)*… = 12, so (q+1)*… must be 4.

Case 1:

This means q may be 3 so that (q+1) is 4. Since a-b must be less than or equal to 9 and must also be the cube of a number, (a-b) must be 8. (Note that a-b cannot be 1 because then the total number of factors of A would only be 3.)

So, a must be 9 and b must be 1 in this case (since a > b). The integers will be 91 and 19, and since M > N, M = 91.

Case 2:

Another possibility is that (a-b) is a product of two prime factors (other than 3), both with the power of 1. In that case, the total number of factors = (2+1)*(1+1)*(1+1) = 12

Note, however, that the two prime factors (other than 3) with the smallest product is 2*5 = 10, but the difference of two single-digit positive integers cannot be 10. This means that only Case 1 can be true, therefore, Statement 1 alone is sufficient. This is certainly not what we expected to find from just the total number of factors!

*Statement 2: The integer (M – N) is a multiple of 9.*

M – N = (10a + b) – (10b + a) = 9a – 9b, so M – N = 9 (a-b) . This is already a multiple of 9.

We get no new information with this statement; (a-b) can be any integer, such as 2 (a = 5, b = 3 or a = 7, b = 5), etc. This statement alone is insufficient, therefore our answer is A.

Don’t take the given data of a GMAT question at face value, especially if you are expecting questions from the 700+ range. Ensure that you have deduced everything that you can from it before coming to a conclusion.

*Getting ready to take the GMAT? We have **free online GMAT seminars** **running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!*

*Karishma**, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as **this blog**!*

The post Quarter Wit, Quarter Wisdom: The Power of Deduction on GMAT Data Sufficiency Questions appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: Making Your GMAT Score SupeRIOr to Ryan Lochte’s appeared first on Veritas Prep Blog.

]]>Whatever it is, it can’t be nearly as bad as being pulled over by fake cops – no lights or nothing, just a badge – then being told to get on the ground and having a gun placed on your forehead and being like, “whatever.” So your big event of 2016 will already go a lot better than Ryan Lochte’s did; you have that going for you.

What else do you have going for you on the GMAT? The ability to learn from the most recent few days of Lochte’s life. Lochte’s biggest mistake wasn’t vandalizing a gas station bathroom at 4am, but rather making up his own story and creating an even larger mess. And that’s a huge lesson that you need to keep in mind for the GMAT:

Don’t make up your own story.

Here’s what that means, on three major question types:

**DATA SUFFICIENCY**

People make up their own story on Data Sufficiency all the time. And like a prevailing theory about Lochte (he didn’t connect the vandalism of the bathroom to the men coming after him for restitution; he really did think that he had been robbed for no reason), it’s not that they’re intentionally lying. They’re just “conveniently” misremembering what they’ve read or connecting dots that weren’t actually connected in real life. Consider the question:

*The product of consecutive integers a, b, c, and d is 5040. What is the value of integer d?*

*(1) d is prime*

*(2) d < c < b < a*

Once people have factored 5040 into 7*8*9*10, they can then quickly recognize that Statement 1 is sufficient: the only prime number in that bunch is 7, so d must be 7. But then when it comes to Statement 2, they’ve often made up their own story. By saying “d is the smallest, and, yep, that’s 7!” they’re making up the fact that these consecutive integers are positive. That was not specifically stated! So it could be 7, 8, 9, and 10 or it could be -7, -8, -9, and -10, making d either -10 or 7. And the GMAT (maybe like an NBC interviewer?) makes it easy for you to make up your own story.

With Statement 1, prime numbers must be positive, so if you weren’t already thinking only about positives, the question format nudges you further in that direction. The answer is A when people often mistakenly choose D, and the reason is that the question makes it easy for you to make up your own story when looking at Statement 2. So before you submit an answer, always ask yourself, “Am I only using the facts explicitly provided to me, or am I somehow making up my own story?”

**CRITICAL REASONING**

Think of your friends who are good storytellers. We hate to break it to you, but they’re probably making at least 10-20% of those stories up. Which makes sense. “It was a pretty big fish,” is a lot less compelling than, “It was the biggest fish any of us had ever seen!” Case in point, the Olympics themselves.

No commentator this week has said that Michael Phelps, Lochte’s teammate, is “a really good swimmer.” They’re posing, “Is he the greatest athlete of all time?” because words that end in -st capture attention (and pageviews). Even Lochte was guilty of going overly-specific for dramatic effect: there was, indeed, a gun pointed at his taxi, but not resting on his forehead. His version just makes the story more exciting and dramatic…and you may very well be guilty of such a mistake on the GMAT. Consider:

*About two million years ago, lava dammed up a river in western Asia and caused a small lake to form. The lake existed for about half a million years. Bones of an early human ancestor were recently found in the ancient lake bottom sediments on top of the layer of lava. Therefore, ancestors of modern humans lived in Western Asia between 2 million and 1.5 million years ago.*

*Which one of the following is an assumption required by the argument?*

*(A) There were not other lakes in the immediate area before the lava dammed up the river.*

* (B) The lake contained fish that the human ancestors could have used for food.*

* (C) The lava under the lake-bottom sediments did not contain any human fossil remains.*

* (D) The lake was deep enough that a person could drown in it.*

* (E) The bones were already in the sediments by the time the lake disappeared.*

The correct answer here is E (if the bones were not already there, then they’re not good evidence that people were there during that time), but the popular trap answer is C. Consider what would happen if C were untrue: that means that there were human fossil remains that pre-date the time period in question.

But here’s where Lochte Logic is dangerous: you’re not trying to prove that the FIRST humans lived in this period at this time; you’re just trying to prove that humans lived here during that time. And whether or not there were fossils from 2.5 million or 4 million years ago doesn’t change that you still have this evidence of people in that 2 million-1.5 million years ago timeframe.

When people choose C, it’s almost always because they made up their own story about the argument – they read it as, “The earliest human ancestors lived in this place and time,” and that’s just not what’s given. Why do they do that? For Lochte’s very own reasons: it makes the story a little more interesting and a little more favorable.

After all, the average pre-MBA doesn’t spend much time reading about archaeology, but if some discovery is that level of exciting (We’ve discovered the first human! We’ve discovered evidence of aliens!) then it crosses your Facebook/Twitter feeds. You’re used to reading stories about the first/fastest/greatest/last, and so when you get dry subject matter your mind has a tendency to put those words in there subconsciously. Be careful – do not make up your own story about the conclusion!

**READING COMPREHENSION**

A similar phenomenon occurs with Reading Comprehension. When you read a long passage, your mind tends to connect dots that aren’t there as it fills in the rest of the story for you. Just like Lochte, who had to fill in the gap of, “Hey what would I have said if someone pointed a gun at me and told me to get on the ground? Oh right…’whatever’ is my default answer for most things,” your mind will start to fill in details that make logical sense.

The problem then comes when you’re asked an Inference question, for which the correct answer must be true based on the passage. For example, if two details in a passage are:

- Michael swam the fastest race of his life.
- Ryan’s race was one of the slowest he’s ever swam.

You might answer the question, “*Which of the following is a conclusion that can be drawn from the passage?*” with:

*(A) Michael swam faster than Ryan.*

Your mind – particularly amidst a lot of other text between those two facts – wants to logically arrange those two swims together, and with “fastest” for Michael and “slowest” for Ryan, it kind of seems logical that Michael was faster. But those two races are never compared directly to each other. Consider that if Michael and Ryan aren’t Phelps and Lochte, but rather filmmaker Michael Moore and Olympic champion Ryan Lochte, then of course Lochte’s slowest swim would still be way, way faster than Moore’s fastest.

Importantly, Reading Comprehension questions love to bait unwitting test-takers with comparisons as answer choices, knowing that your mind is primed to create your own story and draw comparisons that are probably true, but just not proven. So again, any time you’re faced with an answer that seems obvious, go back and ask yourself if the details you’re using were provided to you, or if instead, you’re making up your own story.

So learn a valuable lesson from Ryan Lochte and avoid making up your own story, sticking only to the clean facts of the matter. Stay true to the truth, and you’ll walk out of the test center saying “Jeah!”

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: Making Your GMAT Score SupeRIOr to Ryan Lochte’s appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: What Simone Biles and the Final Five Can Teach You About GMAT Math appeared first on Veritas Prep Blog.

]]>Swimmer Simone Manuel and gymnast Simone Biles each won historic gold medals, and if you’re at all inspired to pursue your own “go for the gold” success in business school (maybe Stanford like Manuel, or UCLA like Biles), you can learn a lot from the Olympic experience. Two lessons, in particular, stand out from the performance of Biles and her “Final Five” teammates:

**Connect Your Skills**

There’s no way to watch Olympic gymnastics and not be overwhelmingly impressed by the skills that each gymnast brings to competition. So at times it’s frustrating and saddening to hear the TV announcers discuss deduction after deduction; shouldn’t everyone at all times just be yelling, “Wow!!!!” at the otherworldly talents of each athlete?

Much like the GMAT, though, Olympic gymnastics is not about the sheer possession of these skills – at that level, everyone has them. It’s more about the ability to execute them and, as becomes evident from the expert commentary of Tim Dagget and Nastia Liukin, to **connect** them. It’s not the uneven bars handstand or release itself that wins the gold, it’s the ability to connect skill after skill as part of a routine. The line, “She was supposed to connect that skill to another…” is always followed by, “That will be a deduction” – both in Olympic gymnastics and on the GMAT.

How does that affect you?

By test day, you had better have all of the necessary skills to compete on the GMAT Quant Section. Area of a triangle, Pythagorean Theorem, Difference of Squares…if you don’t know these rules, you’re absolutely sunk. But to do *really* well, you need to quickly connect skill to skill, and connect items in the problems to the skills necessary to work with them. For example:

If a problem includes a term x^4 – 1, you should immediately be thinking, “That connects really well to the Difference of Squares rule: a^2 – b^2 = (a + b)(a – b), and since x^4 is a square [it’s (x^2)^2] and 1 is a square (it’s 1^2), I can write that as (x^2 + 1)(x^2 – 1), and for good measure I could apply Difference of Squares to the (x^2 – 1) term too.” The GMAT won’t ever specifically tell you, “Use the Difference of Squares,” so it’s your job to immediately connect the symptoms of Difference of Squares (an even exponent, a subtraction sign, a square of some kind, even if it’s 1) to the opportunity to use it.

If you see a right triangle, you should recognize that Area and Pythagorean Theorem easily connect. In a^2 + b^2 = c^2, sides a and b are perpendicular and allow you to use them as the base and height in the area formula. *And* the Pythagorean Theorem includes three squares with the opportunity to create subtraction [you could write it as a^2 = c^2 – b^2, allowing you to say that a^2 = (c + b)(c – b)…], so you could connect yet another skill to it to help solve for variables.

Similarly, if you see a square or rectangle, its diagonal is the hypotenuse of a right triangle, allowing you to use the sides as a and b in the Pythagorean setup, which could also connect to Difference of Squares…etc.

When you initially learned most of these skills in high school (much like when Biles, Aly Raisman, Gabby Douglas, etc. learned handstands and cartwheels in Gymboree), you learned them as individual, isolated skills. “Here’s the formula, and here are 10 questions that test it.” On the GMAT – as in the Olympics – you’re being tested more on your ability to connect them, to see opportunities to use a skill that’s not obvious at first (“Well, I’m not sure what to do but I do have multiple squared terms so let me try to apply Difference of Squares…or maybe I can use a and b in the Area calculation.”), but that helps you build more knowledge of the problem.

So as you study, don’t just learn individual skills. Look for opportunities to connect them, and look for signals that will tell you that a connection is possible. A rectangle problem with a square root of 3 in the answer choices should tell you “the diagonal of this rectangle may very well be connected to a 30-60-90 triangle, since those have the 1, √3, 2 side ratio…” The GMAT is about connections more so than just skills, so study accordingly.

**Stick the Landing**

If you’re like most in the “every four years I love gymnastics for exactly one week” camp, the single most important thing you look for on any apparatus is, “Did he/she stick the landing?” A hop or a step on the landing is the most noticeable deduction on a gymnastics routine…and the same holds true for the GMAT.

Again, the GMAT is testing you on how well you connect a variety of skills, so naturally there are places for you to finish the problem a step short. A problem that requires you to leverage the Pythagorean Theorem and the Area of a Triangle may ask for the sum of sides A and B, for example, but if you’ve solved for the sides individually first, you might see a particular value (A = 6) on your noteboard and in the answer choices and choose it without double checking that you answered the proper question.

That is a horrible and unnecessary “deduction” on your GMAT score: you did all the work right, all the hard part right (akin to the flip-and-two-twists in the air on your vault or the dazzling array of jumps and handstands on the tiny beam) and then botched the landing.

On problems that include more than one variable, circle the variable that the test is looking for and then make sure that you submit the proper answer for that variable. If a problem asks for a combination of variables (a + b, for example), write that down at the top of your scratchwork and go back to it after you’ve calculated. Take active steps to ensure that you stick the landing, because nothing is worse than doing all the work right and then still getting the problem wrong.

In summary, recognize that there are plenty of similarities between the GMAT and **G**y**M**n**A**s**T**ics [the scoring system is too complex for the layman to worry about, the “Final Five” are more important than you think (hint: the test can’t really use the last five questions of a section for research purposes since so many people are rushing and guessing), etc.]. So take a lesson from Simone Biles and her gold-medal-winning teammates: connect your skills, stick the landing, and you’ll see your score vault to Olympian heights.

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: What Simone Biles and the Final Five Can Teach You About GMAT Math appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: How to Avoid GMAT (and Pokemon Go) Traps appeared first on Veritas Prep Blog.

]]>And **that** is why Pokemon Go is responsible for an ever-important GMAT lesson.

Perhaps most newsworthy about Pokemon Go these days is the dangerous and improper places that it has led its avid users. On the improper side, such solemn and dignified places as the national Holocaust Museum and Arlington National Cemetery have had to actively prohibit gamers from descending upon mourners/commemorators while playing the game. And as for danger, there have been several instances of thieves luring gamers into traps and therefore robbing them of valuable (if you’re playing the game, you definitely have a smartphone) items.

And the GMAT can and will do the same thing.

How?

If you’re reading this on our GMAT blog, you’ve undoubtedly already learned that, on Data Sufficiency problems, you cannot assume that a variable is positive, or that it is an integer. But think about what makes Pokemon Go users so vulnerable to being lured into a robbery or to losing track of basic human decency. They’re so invested in the game that they lose track of the situations they’re being lured into.

Similarly, the most dangerous GMAT traps are those for which you should absolutely know better, but the testmaker has gotten your mind so invested in another “game” that you lose track of something basic. Consider the example:

*If y is an odd integer and the product of x and y equals 222, what is the value of x? *

*(1) x is a prime number*

* (2) y is a 3 digit number*

Statement 1 is clearly sufficient. Since y is odd, and an integer, and the product of integers x and y is an even integer, that means that x must be even. And since x also has to be prime (which is how you know it’s an integer, too), the only even prime is 2, making x = 2.

From there your mind is fixated on the game. You can quickly see that in that case y = 111 and x = 2. Which you then have to forget about as you attack Statement 2. But here’s the reason that less than 25% of users in the Veritas Prep Question Bank get this right, while nearly half incorrectly choose D. Statement 1 has gotten your mind fixated on the even/odd/prime game, meaning that you may only be thinking about integers (and positive integers at that) at this point.

That y is a 3-digit number DOES NOT mean that it has to be 111. It could be -111 (making x = -2) or 333 (making x = 2/3). So only Statement 1 alone is sufficient, but the larger lesson is more important. Just like Pokemon Go has the potential to pollute your mind and have you see the real world through its “enhanced reality” lens, so does a statement that satisfies your intellect (“Ah, 2 is the only even prime number!”) give you just enough tunnel vision that you make poor decisions and fall for traps.

The secret here is that almost no one scoring above a 500 carries over all of Statement 1 (“Oh, well I already know that x = 2!”) – a total rookie mistake. It’s that Statement 1 got you fixated on definitions of types of integers (prime, even, odd) and therefore got your mind looking through the “enhanced reality” of integers-only.

The lesson? Much like Pokemon Go, the GMAT has tools to get you so invested in a particular facet of a game that you lose your universal awareness of your surroundings. Know that going in – that you have to consciously step back from that enhanced reality you’ve gained after Statement 1 and look at the whole picture. So take a lesson from Pokemon Go and know when to stop and step back.

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: How to Avoid GMAT (and Pokemon Go) Traps appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: The Overly Specific Question Stem appeared first on Veritas Prep Blog.

]]>And think about it, what if those questions were more specific: “Are you in a melancholy mood today?” “Are you and Josh going to dinner at Don Antonio’s tonight and ordering table-side guacamole?” “Do the Cubs play at 7:05 tonight on WGN?” If someone is asking those questions instead, you’re probably a bit suspicious. Why so specific? What’s your angle?

The same is true on the GMAT. Most of the question stems you see are relatively generic: “What is the value of x?” “Which of the following would most weaken the author’s argument?” So when the question stem get a little too specific, you should become a bit suspicious. What’s the test going for there? Why so specific?

The overly-specific Critical Reasoning question stem is a great example. Consider the problem:

*Raisins are made by drying grapes in the sun. Although some of the sugar in the grapes is caramelized in the process, nothing is added.*

* Moreover, the only thing removed from the grapes is the water that evaporates during the drying, and water contains no calories or nutrients.*

* The fact that raisins contain more iron per food calorie than grapes do is thus puzzling.*

**Which one of the following, if true, most helps to explain why raisins contain more iron per calorie than do grapes?**

*(A) Since grapes are bigger than raisins, it takes several bunches of grapes to provide the same amount of iron as a handful of raisins does.*

* (B) Caramelized sugar cannot be digested, so its calories do not count toward the food calorie content of raisins.*

* (C) The body can absorb iron and other nutrients more quickly from grapes than from raisins because of the relatively high water content of grapes.*

* (D) Raisins, but not grapes, are available year-round, so many people get a greater share of their yearly iron intake from raisins than from grapes.*

* (E) Raisins are often eaten in combination with other iron-containing foods, while grapes are usually eaten by themselves.*

Look at that question stem: a quick scan naturally shows you that you need to explain/resolve a paradox, but the question goes into even more detail for you. It reaffirms the exact nature of the paradox – it’s not about “iron,” but instead that that raisins contain more iron **per calorie** than grapes do. By adding that extra description into the question stem, the testmaker is practically yelling at you, “Make sure you consider calories…don’t just focus on iron!” And therefore, you should be prepared for the correct answer B, the only one that addresses calories, and deftly avoid answers A, C, D, and E, which all focus only on iron (and do so tangentially to the paradox).

Strategically speaking, if a Critical Reasoning question stem gets overly specific, you should pay particular attention to the specificity there…it’s most likely directing you to the operative portion of the argument.

Overly specific questions are most helpful in Data Sufficiency questions (and that same logic will help on Problem Solving too, as you’ll see). The testmaker knows that you’ve trained your entire algebraic life to solve for individual variables. So how can a question author use that lifetime of repetition against you? By asking you to solve for a specific combination that doesn’t require you to find the individual values. Consider this example, which appears courtesy the Official Guide for GMAT Quantitative Review:

*If x^2 + y^2 = 29, what is the value of (x – y)^2?*

*(1) xy = 10*

* (2) x = 5*

Two major clues should stand out to you that you need to Leverage Assets on this problem. For one, using both statements together (answer choice C) is dead easy. If xy = 10 and x = 5 then y = 2 and you can solve for any combination of x and y that anyone could ever ask for. But secondly and more subtly, the question stem should jump out as a classic way-too-specific, Leverage Assets question stem. They asked for a really, really specific value: (x – y)^2.

Now, immediately upon seeing that specificity you should be thinking, “That’s too specific…there’s probably a way to solve for that exact value without getting x and y individually.” That thought process alone tells you where to spend your time – you want to really leverage Statement 1 to try to make it work alone.

And if you’re still unconvinced, consider what the specificity does: the “squared” portion removes the question of negative vs. positive from the debate, removing one of the most common reasons that a seemingly-sufficient statement just won’t work. And, furthermore, the common quadratic (x – y)^2 shares an awful lot in common with the x^2 and y^2 elsewhere in the question stem. If you expand the parentheses, you have “What is x^2 – 2xy + y^2?” meaning that you’re already 2/3 of the way there (so to speak), since they’ve spotted you the sum x^2 + y^2.

The important strategy here is that the overly-specific question stem should scream “LEVERAGE ASSETS” and “You don’t need to solve for x and y…there’s probably a way to solve directly for that exact combination.” Since you know that you’re solving for the expanded x^2 – 2xy + y^2, and you already know that x^2 + y^2 = 29, you’re really solving for 29 – 2xy. Since you know from Statement 1 that xy = 20, then 29 – 2xy will be 29 – 2(10), which is 9.

Statement 1 alone is sufficient, even though you don’t know what x and y are individually. And one of the major signals that you should recognize to help you get there is the presence of an overly specific question stem.

So remember, in a world of generic questions, the oddly specific question should arouse a bit of suspicion: the interrogator is up to something! On the GMAT, you can use that to your advantage – an overly specific Critical Reasoning question usually tells you exactly which keywords are the most important, and an overly specific Data Sufficiency question stem begs for you to leverage assets and find a way to get the most out of each statement.

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: The Overly Specific Question Stem appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: Exit the GMAT Test Center…Don’t Brexit It appeared first on Veritas Prep Blog.

]]>And regardless of whether you side with Leave or Stay as it corresponds to the EU, if your goal is to Leave your job to Stay at a top MBA program in the near future, you’d be well-served to learn a lesson from those experiencing Brexit Remorse today.

How can the Brexit aftermath improve you GMAT score?

**Pregrets, Not Regrets** **(Yes, Brexiters…we can combine words too.)**

The first lesson is quite simple. Unlike those who returned home from the polls to immediately research “What should I have read up on beforehand?” you should make sure that you do your GMAT study *before* you get to the test center, not after you’ve (br)exited it with a score as disappointing as this morning’s Dow Jones.

But that doesn’t just mean, “Study before the test!” – an obvious tip. It also means, “**Anticipate the things you’ll wish you had thought about**.” Which means that you should go into the test center with list of “pregrets” and not leave the test center with a list of regrets.

Having “pregrets” means that you already know before you get to the test center what your likely regrets will be, so that you can fix them in the moment and not lament them after you’ve seen your score. Your list of pregrets should be a summary of the most common mistakes you’ve made on your practice tests, things like:

- On Data Sufficiency, I’d better not forget to consider negative numbers and nonintegers.
- Before I start doing algebra, I should check the answer choices to see if I can stop with an estimate.
- I always blank on the 30-60-90 divisibility rule, so I should memorize it one more time in the parking lot and write it down as soon as I get my noteboard.
- Reading Comprehension inferences must be true, so always look for proof.
- Slow down when writing 4’s and 7’s on scratchwork, since when I rush they tend to look too much alike.
- Check after every 10 questions to make sure I’m on a good pace.

Any mistakes you’ve made more than once on practice tests, any formulas that you know you’re apt to blank on, any reminders to yourself that “when X happens, that’s when the test starts to go downhill” – these are all items that you can plan for in advance. Your debriefs of your practice tests are previews of the real thing, so you should arrive at the test center with your pregrets in mind so that you can avoid having them become regrets.

Much like select English voters, many GMAT examinees can readily articulate, “I should have read/studied/prepare for _____” within minutes of completing their exam, and very frequently, those elements are not a surprise. So anticipate in the hour/day before the test what your regrets might be in the hours/days immediately following the test, and you can avoid that immediate remorse.

**Double Cheque Your Work**

Much like a Brexit vote, you only get one shot at each GMAT problem, and then the results lead to consequences. But the GMAT gives you a chance to save yourself from yourself – you have to both select your answer and confirm it. So, unlike those who voted and then came home to Google asking, “Did I do the right thing?” you should ask yourself that question* before* you confirm your answer. Again, your pregrets are helpful. Before you submit your answer, ask yourself:

- Did I solve for the proper variable?
- Does this number make logical sense?
- Does this answer choice create a logical sentence when I read it back to myself?
- Does this Inference answer
*have to*be true, or is there a chance it’s not? - Am I really allowed to perform that algebraic operation? Let me try it with small numbers to make sure…

There will, of course, be some problems on the GMAT that you simply don’t know how to do, and you’ll undoubtedly get some problems wrong. But for those problems that you really should have gotten right, the worst thing that can happen is realizing a question or two later that you blew it.

Almost every GMAT examinee can immediately add 30 points to his score by simply taking back those points he would have given away by rushing through a problem and making a mistake he’d be humiliated to know he made. So, take that extra 5-10 seconds on each question to double check for common mistakes, even if that means you have to burn a guess later in the section. If you minimize those mistakes on questions within your ability level, that guess will come on a problem you should get wrong, anyway.

Like a Brexit voter, the best you can do the day before and day of your important decision-making day is to prepare to make the best decisions you can make. If you’re right, you’re right, and if you’re wrong, you’re wrong, and you may never know which is which (the GMAT won’t release your questions/answers and the Brexit decision will take time to play out). The key is making sure that you don’t leave with immediate regrets that you made bad decisions or didn’t take the short amount of time to prepare yourself for better ones. Enter the test center with pregrets; don’t Brexit it with regrets.

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: Exit the GMAT Test Center…Don’t Brexit It appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: The Least Helpful Waze To Study appeared first on Veritas Prep Blog.

]]>And chances are that you’ve also, at some point or another, been inconvenienced by Waze, whether by a devout user cutting blindly across several lanes to make a suggested turn, by the app requiring you to cut through smaller streets and alleys to save a minute, or by Waze users turning your once-quiet side street into the Talladega Superspeedway.

To its credit, Waze is correcting one of its most common user complaints – that it often leads users into harrowing and time-consuming left turns. But another major concern still looms, and it’s one that could damage both your fender and your chances on the GMAT:

**Beware the shortcuts and “crutches” that save you a few seconds, but in doing so completely remove all reasoning and awareness.**

With Waze, we’ve all seen it happen: someone so beholden to, “I must turn left on 9th Street because the app told me to!” will often barrel through two lanes of traffic – with no turn signal – to make that turn…not realizing that the trip would have taken the exact same amount of time, with much less risk to the driver and everyone else on the road, had he waited a block or two to safely merge left and turn on 10th or 11th. By focusing so intently on the app’s “don’t worry about paying attention…we’ll tell you when to turn” features, the driver was unaware of other cars and of earlier opportunities to safely make the merge in the desired direction.

The GMAT offers similar pitfalls when examinees rely too heavily on “turn your brain off” tricks and techniques. As you learn and practice them, strategies like the “plumber butt” for rates and averages may seem quick, easy, and “turn your brain off” painless. But the last thing you want to do on a higher-order thinking test like the GMAT is completely turn your brain off. For example, a “turn your brain off” rate problem might say:

*John drives at an average rate of 45 miles per hour. How many miles will he drive in 2.5 hours?*

And using a Waze-style crutch, you could remember that to get distance you multiply time by rate so you’d get 112.5 miles. That may be a few seconds faster than performing the algebra by thinking “Rate = Distance over Time”; 45 = D/2.5; 45(2.5) = D; D = 112.5.

But where a shortcut crutch saves you time on easier problems, it can leave you helpless on longer problems that are designed to make you think. Consider this Data Sufficiency example:

*A factory has three types of machines – A, B, and C – each of which works at its own constant rate. How many widgets could one machine A, one Machine B, and one Machine C produce in one 8-hour day?*

*(1) 7 Machine As and 11 Machine Bs can produce 250 widgets per hour*

*(2) 8 Machine As and 22 Machine Cs can produce 600 widgets per hour*

Here, simply trying to plug the information into a simple diagram will lead you directly to choice E. You simply cannot separate the rate of A from the rate of B, or the rate of B from the rate of C. It will not fit into the classic “rate pie / plumber’s butt” diagram that many test-takers use as their “I hate rates so I’ll just do this trick instead” crutch.

However, those who have their critical thinking mind turned on will notice two things: that choice E is kind of obvious (the algebra doesn’t get you very close to solving for any one machine’s rate) so it’s worth pressing the issue for the “reward” answer of C, and that if you simply arrange the algebra there are similarities between the number of B and of C:

7(Rate A) + 11(Rate B) = 250

8(Rate A) + 22(Rate C) = 600

Since 11 is half of 22, one way to play with this is to double the first equation so that you at least have the same number of Bs as Cs (and remember…those are the only two machines that you don’t have “together” in either statement, so relating one to the other may help). If you do, then you have:

14(A) + 22(B) = 500

8(A) + 22(C) = 600

Then if you sum the questions (Where does the third 22 come from? Oh, 14 + 8, the coefficients for A.), you have:

22A + 22B + 22C = 1100

So, A + B + C = 50, and now you know the rate for one of each machine. The two statements together are sufficient, but the road to get there comes from awareness and algebra, not from reliance on a trick designed to make easy problems even easier.

The lesson? Much like Waze, which can lead to lack-of-awareness accidents and to shortcuts that dramatically up the degree of difficulty for a minimal time savings, you should take caution when deciding to memorize and rely upon a knee-jerk trick in your GMAT preparation.

Many are willing (or just unaware that this is the decision) to sacrifice mindfulness and awareness to save 10 seconds here or there, but then fall for trap answers because they weren’t paying attention or become lost when problems are more involved because they weren’t prepared.

So, be choosy in the tricks and shortcuts you decide to adopt! If a shortcut saves you a minute or two of calculations, it’s worth the time it takes to learn and master it (but probably never worth completely avoiding the “long way” or knowing the general concept). But if its time savings are minimal and its grand reward is that, “Hey, you don’t have to understand math to do this!” you should be wary of how well it will serve your aspirations of scores above around 600.

Don’t let these slick shortcut waze of avoiding math drive you straight into an accident. Unless the time savings are game-changing, you shouldn’t make a trade that gains you a few seconds of efficiency on select, easier problems in exchange for your awareness and understanding.

**free online GMAT seminars **running all the time. And as always, be sure to follow us on **Facebook**, **YouTube**, **Google+** and **Twitter**!

*By Brian Galvin.*

The post GMAT Tip of the Week: The Least Helpful Waze To Study appeared first on Veritas Prep Blog.

]]>