**You’re better than that.**

Too often on Data Sufficiency problems, people are impressed by giving themselves a 33% or even 50% chance of success. Keep in mind that guessing one of three remaining choices means you’re probably going to get that problem wrong! And of more strategic importance is this: if one statement is dead obvious, you haven’t just raised your probability of guessing correctly – you *should* have just learned what the question is all about!

**If a Data Sufficiency statement is clearly insufficient, it’s arguably the most important part of the problem.**

Consider this example:

What is the value of integer z?

(1) z represents the remainder when positive integer x is divided by positive integer (x – 1)

(2) x is not a prime number

Many examinees will be thrilled here to see that statement 2 is nowhere near sufficient, therefore meaning that the answer must be A, C, or E – a 33% chance of success! But a more astute test-taker will look closer at statement 2 and think “this problem is likely going to come down to whether it matters that x is prime or not” and then use that information to hold Statement 2 up to that light.

For statement 1, many will test x = 5 and (x – 1) = 4 or x = 10 and (x – 1) = 9 and other combinations of that ilk, and see that the result is usually (always?) 1 remainder 1. But a more astute test-taker will see that word “prime” and ask themselves why a prime would matter. And in listing a few interesting primes, they’ll undoubtedly check 2 and realize that if x = 2 and (x – 1) = 1, the result is 1 with a remainder of 0 – a different answer than the 1, remainder 1 that usually results from testing values for x. So in this case statement 2 DOES matter, and the answer has to be C.

Try this other example:

What is the value of x?

(1) x(x + 1) = 2450

(2) x is odd

Again, someone can easily skip ahead to statement 2 and be thrilled that they’re down to three options, but it pays to take that statement and file it as a consideration for later: when I get my answer for statement 1, is there a reason that even vs. odd would matter? If I get an odd solution, is there a possible even one?

Factoring 2450 leaves you with consecutive integers 49 and 50, so x could be 49 and therefore odd. But is there any possible even value for x, a number exactly one smaller than (x + 1) where the product of the two is still 2450? There is: -50 and -49 give you the same product, and in that case x is even. So statement 2 again is critical to get the answer C.

And the lesson? A ridiculously easy statement typically holds much more value than “oh this is easy to eliminate.” So when you can quickly and effortlessly make your decision on a Data Sufficiency statement, don’t be too happy to take your slightly-increased odds of a correct answer and move on. Use that statement to give you insight into how to attack the other statement, and take your probability of a correct answer all the way up to “certain.”

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

What does that mean?

Consider the statement:

8 = 8

That’s obviously not groundbreaking news, but it does show the underpinnings of what makes algebra “work.” When you use that equals sign, =, you’re saying that what’s on the left of that sign is the exact same value as what’s on the right hand side of that sign. 8 = 8 means “8 is the same exact value as 8.” And then as long as you do the same thing to both 8s, you’ll preserve that equality. So you could subtract 2 from both sides:

8 – 2 = 8 – 2

And you’ll arrive at another definitely-true statement:

6 = 6

And then you could divide both sides by 3:

6/3 = 6/3

And again you’ve created another true statement:

2 = 2

Because you start with a true statement, as proven by that equals sign, as long as you do the exact same thing to what’s on either side of that equals sign, the statement will remain true. So when you replace that with a different equation:

3x + 2 = 8

That’s when the equals sign really helps you. It’s saying that “3x + 2″ is the exact same value as 8. So whatever you do to that 8, as long as you do the same exact thing to the other side, the equation will remain true. Following the same steps, you can:

Subtract two from both sides:

3x = 6

Divide both sides by 3:

x = 2

And you’ve now solved for x. That’s what you’re doing with algebra. You’re taking advantage of that equality: the equals sign guarantees a true statement and allows you to do the exact same thing on either side of that sign to create additional true statements. And your goal then is to use that equals sign to strategically create a true statement that helps you to answer the question that you’re given.

**Equality applies to all terms; it cannot single out just one individual term.**

Now, where do people go wrong? The most common mistake that people make is that they don’t do the same thing to both SIDES of the inequality. Instead they do the same thing to a term on each side, but they miss a term. For example:

(3x + 5)/7 = x – 9

In order to preserve this equation and eliminate the denominator, you must multiply both SIDES by 7. You cannot multiply just the x on the right by 7 (a common mistake); instead you have to multiply everything on the right by 7 (and of course everything on the left by 7 too):

7(3x + 5)/7 = 7(x – 9)

3x + 5 = 7x – 63

Then subtract 3x from both sides to preserve the equation:

5 = 4x – 63

Then add 63 to both sides to preserve the equation:

68 = 4x

Then divide both sides by 4:

17 = x

The point being: preserving equality is what makes algebra work. When you’re multiplying or dividing in order to preserve that equality, you have to be completely equitable to both sides of the equation: you can’t single out any one term or group. If you’re multiplying both sides by 7, you have to distribute that 7 to both the x and the -9. So when you take the GMAT, do so with equality in mind. The equals sign is what allows you to solve for variables, but remember that you have to do the exact same thing to both sides.

Inequalities? Well those will just have to wait for another day.

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

How does Chip’s mentality help you on the GMAT? Consider this Data Sufficiency fragment:

Is the product of integers j, k, m, and n equal to 1?

(1) (jk)/mn = 1

The approach that most students take here involves plugging in numbers for j, k, m, and n and seeing what answer they get. Knowing that jk = mn (by manipulating the algebra in statement 1) they may pick combinations:

1 * 8 = 2 * 4, in which case the product is 64 and the answer is no

2 * 5 = 1 * 10, in which case the product is 100 and the answer is no

And so some will, after picking a series of arbitrary number choices, claim that the answer must be no. But in doing so, they’re leaving out the possibilities:

1 * 1 = 1 * 1, in which case the product jkmn = 1*1*1*1 = 1, so the answer is yes

-1 * 1 = -1 * 1, in which case the product is also 1, and the answer is yes

And here’s where Chip Logic comes into play: in any given classroom, when the two latter sets of numbers are demonstrated, at least a few students will say “How are we allowed to use the same number twice? No one told us we could do that?”. And the best response to that is Chip’s very own: “I didn’t know I **COULDN’T** do that.” Since the problem didn’t restrict the use of the same number twice (to do so they might say “unique integers j, k, m, and n”), it’s on you to consider all possible combinations, including “they all equal 1.” Data Sufficiency tends to reward those who consider the edge cases: the highest or lowest possible number allowed, or fractions/decimals, or negative numbers, or zero. If you’re going to pick numbers on Data Sufficiency questions, you have to think like Chip: if you weren’t explicitly told that you couldn’t, you have to assume that you can.

So on Data Sufficiency problems, when you pick numbers, do so with a sense of entitlement and audacity. Number-picking is no place for the timid – your job is to “break” the obvious answer by finding allowable combinations that give you a different answer; in doing so, you can prove a statement to be insufficient. So as you chip away at your goal of a 700+ score, summon your inner Chip. When it comes to picking numbers, “I didn’t know I couldn’t do that” is the mentality you need to know you can use.

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

At the end of your GMAT exam you will be exhausted. But will you be exhaustedly triumphant? Here are 5 things you can do to help you tiredly walk out of the test center with a championship smile:

**1) Practice The Way You’ll Play**

The GMAT is a long test. You’ll be at the test center for about 4 hours by the time you’re done, and even during those 8-minute section breaks you’ll be hustling the whole time. Think of it this way: with a 30-minute essay, a 30-minute Integrated Reasoning section, a 75-minute Quant section and a 75-minute Verbal section, you’ll be actively answering questions for 3 hours and 30 minutes – a reasonable time for someone your age to complete a marathon (and well more than an hour off the world record). If you were training for a marathon, you wouldn’t stop your workouts after an hour or 90 minutes each time; at the very least you’d work up to where you’re training for over two hours at least once a week. And the same is true of the GMAT. To have that mental stamina to stay focused on a dense Reading Comprehension passage over 3 hours after you arrived at the test center, you need to have trained your mind to focus for 3+ hours at a time. To do so:

-Take full-length practice tests, including the AWA and IR sections.

-Practice verbal when you’re tired, after a long day of work or after you’ve done an hour or more of quant practice

-Make at least one 2-3 hour study session a part of your weekly routine and stick to it. Work can get tough, so whether it’s a Saturday morning or Sunday afternoon, pick a time that you know you can commit to and go somewhere (library, coffee shop) where you know you’ll be able to focus and get to work.

**2) Be Ready For The 8-Minute Breaks**

Like LeBron James, you’ll have precious few opportunity to rest during your “MBA Finals” date with the GMAT. You have an 8-minute break between the IR section and the Quant section and another 8-minute break between the Quant section and the Verbal section…and that’s it. And those breaks go quickly, as in that 8 minutes you need to check out with the exam proctor to leave the room and check back in to re-enter. A minute or more of your break will have elapsed by the time you reach your locker or the restroom…time flies when you’re on your short rest period! So be ready:

-Have a plan for your break, knowing exactly what you want to accomplish: restroom, water, snack. You shouldn’t have to make many energy-draining decisions during that time; your mind needs a break while you refresh your body, so do all of your decision-making before you even arrive at the test center.

-Practice taking 8-minute breaks when you study and take practice tests. Know how long 8 minutes will take and what you can reasonably accomplish in that time.

**3) Use Energy Wisely**

If you’re watching LeBron James during the Finals you’ll see him take certain situations (if not entire plays) off, conserving energy for when he has the opportunity to sprint downcourt on a fast break or when he absolutely has to get out on a ready-to-shoot Steph Curry. For you on the GMAT, this means knowing when to stress over calculations on quant or details on reading comprehension. Most students simply can’t give 100% effort for the full test, so you may need to consider:

-On this Data Sufficiency problem, do you need to finish the calculations or can you stop early knowing that the calculations will lead to a sufficient answer?

-As you read this Reading Comp passage, do you need to sweat the scientific details or should you get the gist of it and deal with details later if a question specifically asks for them?

-With this Geometry problem, is it worth doing all the quadratic math or can you estimate using the answer choices? If you do do the math, are you sure that it will get you to an answer in a reasonable amount of time?

Sometimes the answer is “yes” – if it’s a problem that you know you can get right, but only if you grind through some ugly math, that’s a good place to invest that energy. And other times the answer is “no” – you could do the work, but you’re not so sure you even set it up right and the numbers are starting to look ugly and you usually get these problems wrong, anyway. Practice is the key, and diagnosing how those efforts have gone on your practice tests. You might not have enough mental energy to give all the focus you’d like all day, so have a few triggers in there that will help you figure out which battles you can lose in an effort to win the war.

**4) Master The “Give Your Mind A Break” Problems**

Some GMAT problems are extremely abstract and require a lot of focus and ingenuity. Others are very process-driven if you know the process – among those are the common word problems (weighted averages, rate problems, Venn diagram problems, etc.) and straightforward “solve for this variable” algebra problem solving problems. If you’ve put in the work to master those content-driven problems, they can be a great opportunity to turn your brain off for a few minutes while you just grind out the necessary steps, turning your mind back on at the last second to double check for common mistakes.

This comes down to practice. If you recognize the common types of “just set it up and do the work” problems, you’ll know them when you see them and can relax to an extent as you perform the same steps you have dozens of times. If you recognize the testmaker’s intent on certain problems – in an “either/or” SC structure, for example, you know that they’re testing parallelism and can quickly eliminate answers that don’t have it; if a DS problem includes >0 or <0, you can quickly look for positive/negative number properties with the “usual suspects” that indicate those things – you can again perform rote steps that don’t require much mental heavy lifting. The test is challenging, but if you put in the work in practice you’ll find where you can take some mental breaks without getting punished.

** 5) Minimize What You Read**

The verbal section comes last, and that’s where focus can be the hardest as you face a barrage of problems on a variety of topics – astronomy, an election in a fake country, a discovery about Druid ruins, comparative GDP between various countries, etc. A verbal section will include thousands of words, but only a couple hundred are really operative words upon which correct answers hinge. So be proactive as you read verbal problems. That means:

-Scan the answer choices for obvious decision points in SC problems. If you know they’re testing verb tense, for example, then you’re looking at the original sentence for timeline and you don’t have to immediately focus on any other details. On many questions you can get an idea of what you’re reading for before you even start reading.

-Let details go on RC passages. Your job is to know the general author’s point, and to have a good idea of where to find any details that they might ask about. But in an RC passage that includes a dozen or more details, they may only ask you about one or two. Worry about those details when you’re asked for them, saving mental energy by never really stressing the ones that end up not mattering at all.

-Read the question stem first on CR problems. Before you read the prompt, know your job so that you know what to look for. If you need to weaken it, then look for the flaw in the argument and focus specifically on the key words in the conclusion. If you need to draw a conclusion, your energy needs to be highest on process-of-elimination at the answers, and you don’t have to stress the initial read of the prompt nearly as much.

Know that the GMAT is a long, exhausting day, and you won’t likely get out of the test center without feeling completely wiped out. But if you manage your energy efficiently, you can use whatever energy you have left to triumphantly raise that winning score report over your head as you walk out.

*By Brian Galvin*

But remember: it’s not that YOU don’t get to use a calculator on the GMAT quant section. It’s that NO ONE gets to use a calculator. And that creates the opportunity for a competitive advantage. If you know that the GMAT doesn’t include “calculator problems” – the testmakers know that you don’t get a calculator, too, so they create questions that savvy examinees can find efficient ways to solve by hand (or head) or estimate – then you can use that to your advantage, looking for “clean” numbers to calculate and saving calculations until they’re truly necessary. As an example, consider the problem:

A certain box contains 14 apples and 23 oranges. How many oranges must be removed from the box so that 70 percent of the pieces of fruit in the box will be apples?

(A) 3

(B) 6

(C) 14

(D) 17

(E) 20

If you’re well-versed in “non-calculator” math, you should recognize a couple things as you scan the problem:

1) The 23 oranges represent a prime number. That’s an ugly number to calculate with in a non-calculator problem.

2) 70% is a very clean number, which reduces to 7/10. Numbers that end in 0 don’t tend to play well with or come from double-digit prime numbers, so in this problem you’ll need to “clean up” that 23.

3) The 14 apples are pretty nicely related to the 70%. 14*5 = 70, and 14 = 7 * 2, where 70% is 7/10. So in sum, the 14 is a pretty “clean” number you’re working with to find a relationship that includes that also “clean” 70%. And the 23 is ugly.

So if you wanted to plug in numbers here to see how many oranges should be removed, keep in mind that your job is to get that 23 to look a lot cleaner. So while the Goldilocksian conventional methodology for backsolving is to “start with the middle number, then determine whether it’s correct, too big, or too small,” if you’re preparing for non-calculator math you should quickly see that with answer choice C of 14, that would give you 14 apples and 9 (which is 23-14) oranges), and you’re stuck at that ugly number of 23 as your total number of pieces of fruit. So your goal should be to find cleaner numbers to calculate.

You might try choice A, 3, which is very easy to calculate (23 oranges minus 3 = 20 oranges left), but a quick scan there would show that that’s way too many oranges (still more oranges than apples). So the other number that can clean up the 23 oranges is 17 (choice D), which would at least give you an even number (23 – 17 = 6). Because you’re now dealing with clean numbers (14, 6, and 70%) it’s worth doing the full calculation to see if choice D is really correct. And since 14 apples out of 20 total pieces of fruit is, indeed, 70%, you know that D is correct.

Now, if you follow these preceding paragraphs step-by-step, they should look just as long and unwieldy as the algebra or some traditional backsolving. But to an examinee seasoned in non-calculator math, finding “clean numbers worth testing” is more about the scan than the process. You should know that Odd + or – Odd = Even, but that Odd + or – Even is Odd. So with an even “fixed” number of 14 apples and an odd “changeable” number of 23 oranges, an astute GMAT test-taker looking to save time would probably eschew plugging in C first and realize that it’s just not going to be correct. Then another scan of numbers shows that only 3 and 17 are odd and prone to becoming “clean” when subtracted from the prime 23, so D should start looking tempting within seconds.

Note: this strategy isn’t for everyone or for every problem, but for those shooting for the 700s it can be extremely helpful to develop enough “number fluency” that you can save time not-testing numbers that you can see don’t have a real chance. On a non-calculator test that typically involves “clean” (even, divisible by 10, etc.) numbers, quickly recognizing which numbers will result in good, clean, non-calculator math is a very helpful skill.

*By Brian Galvin*

1) How high can I get? (Snoop’s general state of mind)

2) How low can I go? (Because you know Snoop’s in it to win it)

And that mindset is absolutely crucial in a Data Sufficiency number-picking situation. On these problems, the GMAT Testmaker knows your tendencies well: you’re predisposed to picking numbers that are easy to work with. Consider an example like:

If x is a positive integer less than 30, what is the value of x?

(1) When x is divided by 3 the remainder is 2.

(2) When x is divided by 5 the remainder is 2

On this problem, most can quite quickly eliminate statement 1, as x could be 5, 8, 11, 14, 17, 20, 23, 26, or 29. Typically your quick-thinking methodology will have you look at 3, then add the remainder of 2 (producing 5), then start looking at other multiples of 3 and doing the same (6 + 2 gives you 8, 9 + 2 gives you 11, and so on).

And similarly you can apply that logic to statement 2 and eliminate that pretty quickly. The obvious first candidate is 7 (add the remainder of 2 to 5), and then you should see the pattern: 7, 12, 17, 22, and 27 are your options.

So when you look at these quick lists and see that the only place they overlap is 17 (17/5 is 3 remainder 2 and 17/3 is 5 remainder 2), you might opt for C.

But where does Snoop Dogg’s Limbo Contest come in? Look at the range they gave you: a POSITIVE INTEGER (so anything > 0) LESS THAN 30 (so anything <30). So when you combine those, your range is 0 < x < 30. Then ask yourself:

*How high can you get? Well, on either list you’ve gotten as close to 30 as possible. The next possible number on the first list (5, 8, 11, 14, 17, 20, 23, 26, 29…) is 32, but they tell you that x is less than 30 so you can’t get that high. And the next possible number on the second list (7, 12, 17, 22, 27…) is also 32, but again you’re not allowed to get that high. So you’ve definitely answered that question well.

*How low can you go? On this one, you haven’t yet exhausted the lower limit. Look at the patterns on those lists – on the first one, all numbers are 3 apart but you started at 5. If you move down 3, you get to 2 (2, 5, 8…). And 2/3 is 0 remainder 2, so 2 is a legitimate number on that list, a positive integer that leaves a remainder of 2 when divided by 3. And on the second list, you started at 7 and kept adding 5s. Move 5 spots to the left and you’re again at 2, which does leave a remainder of 2 when divided by 5. So upon closer examination, this problem has two solutions: 2 and 17.

The GMAT does a masterful job of setting ranges that test-takers don’t exhaust, and that’s where the Snoop Limbo mentality comes into play. If you’re always asking yourself “how high can I get and how low can I go?” you’ll force yourself to consider all available options. So for example, if the test were to tell you that:

x^2 < 25 –> This doesn’t just mean that x is less than 5 (how high can you get) it also means that x is greater than -5 (how low can you go)

x is a positive three-digit integer –> make sure you try 100 (how low can you go) and 999 (how high can you get)

x > 0 –> You might want to start with 1, but make sure you consider fractions like 1/2 and 1/8, too (how low can you go? all the way to 0.00000….0001), and try a number in the thousands or millions too (how high can you get?) since most people will just test easy-reference numbers like 1, 2, 5, and 10. A massive number might react differently.

In triangle ABC, angle ABC measures greater than 90 degrees –> remember that “how high can you get” is capped by the fact that the three angles have to add to 180, but this obtuse angle can get up even above 179 (how high can you get?)

x is a nonnegative integer –> the smallest integer that’s not negative is 0, not 1! How low can you go? You’d better check 0.

3 < x < 5 –> it doesn’t have to be 4, as x could be 3.0000000001 or 4.99999999

So keep Snoop’s Limbo Contest in mind when you pick numbers on Data Sufficiency problems. Don’t just pick the easiest numbers to plug in or the first few numbers that come to mind. The GMAT often plays to the edge cases, so always ask yourself how high you can get and how low you can go.

(and for our readers who prefer East Coast rap to West Coast rap, feel free to substitute this with the “Biggie (how big a number can you use) Smalls (how small a number can you use)” method and you can end up with a notoriously big score).

*By Brian Galvin*

Making fewer mistakes.

On an adaptive test like the GMAT, making silly mistakes on problems that you should get right can be devastating to your score. Not only do you get that question wrong, but now you’re being served easier questions subsequent to that, with an even more heightened necessity of avoiding silly mistakes there. So you should make a point to notice the mistakes you make on practice tests so that you’re careful not to make them again. Particularly under timed pressure in a high-stress environment we’re all susceptible to making mistakes. Here are 5 of the most common so that you can focus on making fewer of these:

**1) Forgetting about “unique” numbers.**

If someone asked you to pick a number 1-10, you might pick 5 or 6, or maybe you’d shoot high and pick 9 or low and pick 2. But you probably wouldn’t respond with 9.99 or 3 and 1/3. We tend to think in terms of integers unless told otherwise. Similarly, if someone asked “what number, squared, gives you 25″ you’d immediately think of 5, but it might take a second to think of -5. We tend to think in terms of positive numbers unless told otherwise.

On the GMAT, a major concept you’ll be tested on is your ability to consider all relevant options (an important skill in business). So before you lock in your answer, ask yourself whether you considered: positive numbers (which you naturally will), negative numbers, fractions/nonintegers, zero, the biggest number they’d let you use, and the smallest number they’d let you use.

**2) Answering the wrong question.**

An easy way for the GMAT testmaker to chalk up a few more incorrect answers on the problem is to include an extra valuable or an extra step. For example, if a problem asked:

Given that x + y = 8 and that x – y = 2, what is the value of y?

You might quickly use the elimination method for systems of equations, stacking the equations and adding them together:

x + y = 8

x – y = 2

2x = 10

x = 5

But before you pick “5” as your answer, reconsider the question – they made it convenient to solve for x, but then asked about y. And in doing so, they baited several test-takers into picking 5 when the answer is 2. Make sure you always ask yourself whether you’ve answered the right question!

**3) Multiplying/dividing variables across inequalities.**

By the time you take the test you should realize that if you multiply or divide both sides of an inequality by a NEGATIVE number, you have to flip the sign. -x > 5 would then become x < -5. But the testmakers also know that you’re often trained mentally to only employ that rule when you see the negative sign, –

To exploit that, they may get you with a Data Sufficiency question like:

Is a > 5b?

(1) a/b > 5

And many people will simply multiply both sides of statement 1’s equation by b and get to an ‘exact’ answer: a > 5b. But wait! Since you don’t know whether b is positive or negative, you cannot perform that operation because you don’t know whether you have to flip the sign. When you see variables and inequalities, make sure you know whether the variables are negative or positive!

**4) Falling in love with the figure.**

On geometry questions, you can only rely on the figure’s dimensions as fairly-reliable measurements if: One, it’s a Problem Solving question (you can never bring in anything not explicitly provided on a DS problem); and, two, if the figure does not say “not drawn to scale”. But if it’s a Data Sufficiency problem *or* if the figure says not drawn to scale, you have to consider various ways that the angles and shapes could be drawn. Often times people will see a “standard” triangle with all angles relatively similar in measure (around 60 degrees, give or take a few), and then base all of their assumptions on their scratchwork triangle of the same dimensions. But wait – if you’re not told that one of the angles could be, say, 175 degrees, you could be dealing with a triangle that’s very different from the one on the screen or the one on your scratchwork. Don’t get too beholden to the first figure you see or draw – consider all the options that aren’t prohibited by the problem.

**5) Forgetting that a definitive “no” answer to a Data Sufficiency question means “sufficient.”**

Say you saw the Data Sufficiency prompt:

Is x a prime number?

1) x = 10! + y, where y is an integer such that 1 < y < 10

Mathematically, you should see that since every possible value of y is a number that’s already contained within 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1, whatever y is the new number x will continue to be divisible by. For example, if y = 7, then you’re taking 10!, a multiple of 7, and adding another 7 to it, so the new number will be a multiple of 7.

Therefore, x is not a prime number, so the answer is “no.” But here’s where your mind can play tricks on you. If you see that “NO” and in your mind associate that with “Statement 1 — NO”, you might eliminate statement 1 when really statement 1 *is* sufficient. You can guarantee that answer that x is not prime, so even though the answer to the question is “no” the statement itself is “positive” in that it’s sufficient.

So be careful here – if you get a definitive “NO” answer to a statement, don’t cross it out or eliminate it!

Remember, a crucial part of your GMAT study plan should be making fewer mistakes. While you’re right to seek out more information, more practice problems, and more skills, “fewer” is just as important on a test like this. Make fewer of the mistakes above, and your score will take you more places.

*By Brian Galvin*

In his classic routine from The Original Kings of Comedy, Cedric the Entertainer talks about the way that two different types of people view confrontation.

Some people *hope* that there’s no confrontation, worrying all the while that there might be.

Others – including Cedric himself – “*wish* a would” start some conflict. (Note: Kanye West borrowed this sentiment years later in a lyric for “The Good Life”)

On the GMAT, you want to be on Cedric’s team. Many test-takers go into the reasoning-based exam *hoping* that they don’t see too much Testmaker trickery, but those poised to score 700+ – the Original Kings of Calm on the test – wish the testmaker would. They’ve prepared to check negative numbers and nonintegers on Data Sufficiency. They’ve prepared to double-check their inferences on Critical Reasoning and Reading Comprehension questions to make sure they “must be true” (correct) and not just “probably true.” They’ve prepared to go back to the question on Problem Solving to make sure that the variable they solved for is the one that the question asked about. They’ve tracked the silly and recurring mistakes that they made in practice and they *wish* the test tries to sneak that by them on test day.

Why?

A few reasons. For one, any mistake you’ve made more than once in practice is something that you know is going to be difficult for people. By being ready for it, you’re poised to get “cheap” difficulty points (so to speak) when it’s really not that hard. If a question asks:

Starting with a full 12-gallon tank of gas, D.L. drove 225 miles getting 45 miles per gallon of gas burned. How much gas was left in D.L.’s tank at the end of the trip?”

You WANT them to ask about the gas that’s LEFT OVER (7 gallons) and include the amount of gas that was USED (5 gallons) as a trap answer. The math is pretty pedestrian, but that little twist – that you’ll solve for the amount used and then have to take just one more step to finish the problem, subtracting that 5 gallons used from the 12 you started with – will ensure that at least 20% more people get that problem wrong for just not reading carefully or from being in a hurry to finish the math and move on. You want to see those silly little trap answers there because they add difficulty (and therefore points) to your test without being truly “hard.”

Another reason is that there’s nothing more confidence-building than catching the GMAT trying to beat you with a silly trick that you’re more than prepared for. That’s Cedric’s point about concert tickets; sometimes it’s not sitting in great seats that makes you feel truly big-time, it’s being able to prove to someone else that you’ve earned the right to sit in them. That’s why Cedric wishes a would sit in his seats; he wants that pure satisfaction that comes from being justified in kicking them out! That adds happiness and satisfaction to the whole show. Similarly, when you catch the GMAT trying to trick you with a trap you saw coming from a mile away, that’s a huge confidence boost for the rest of the test. And that’s the ultimate point of this post – you can’t go into the test fearful of falling for traps. If that’s your mindset – “I really hope the GMAT doesn’t trick me into forgetting about zero” – then even if you catch that and save your answer, it can breed more stress. In a Data Sufficiency format, that could look like:

What is the value of x?

(1) 8x = x^2

(2) x is not a positive number

But on Cedric’s team – I wish the GMAT would try to sneak numbers like negatives, fractions, and zero past me – that same discussion looks like this (in **bold** because, well, it’s a bolder way of thinking):

What is the value of x?

(1) 8x = 8^2

<Cedric’s discussion with self: **Man I know you want me to say 8 but that’s easy. I think x has to be 8 but I think you may be trying to trick me, GMAT. I’m too quick for that; I’m a grown-ass man dawg. We ain’t through here, you hear me?.**>

(2) x is not a positive number

<Cedric’s discussion with self: **There you go, always talking in code like that. x is not a positive number…you didn’t say it was negative so what’s the difference there. It’s zero; you don’t think I know that? So I see what you’re doing…I knew you’d try to throw zero at me. 8x = x^2 above? Anything times 0 is 0 so 0 is that second answer up top; I knew it wouldn’t be that easy. Statement 1 isn’t sufficient because of 0 and 8 and statement 2 says it can’t be 8. That’s C, dawg, as in you can’t C me easy like that. What do you have up next there Einstein?**>

The real difference? Cedric’s mindset uses his knowledge that the GMAT will hit you with common traps as confidence. He knows it’s coming and he’s happy when he does see it, and catching those traps just breeds more confidence since he knows he’s better than the test and handling at least some of it’s difficulty with ease. The other mindset – even if it leads to a right answer on a particular question – breeds fear and anxiety, and those qualities can take a toll on future questions. By the time you take the GMAT you know what common traps it’s setting for you, so be confident when you see and avoid them! Like in this example:

x and y are consecutive integers such that x > y. What is the absolute value of y?

(1) The product xy is 20.

(2) x is a prime number.

Have you summoned your inner Cedric? Statement 1 begs you to say “oh, well if x is greater than y and they’re consecutive integers that multiply to 20, it’s 4 and 5 and x is the big one so y = 4. But wait – don’t you wish they’d try to throw a trick at you? Are you ready for it when it comes?

Statement 2 looks to just confirm what you saw before. Yep, x = 5 in statement 1, and if you take statement 2 alone it’s nowhere near sufficient. So what’s Cedric thinking? He *wishes* that the test would try to hit him with some of the low-level trickery it so often does. The test likes nonintegers? No, those don’t apply since the question says that x and y are indeed integers. The test likes 0? That doesn’t really apply either for statement 1 since 0 times anything can’t equal 20. But the GMAT also likes negative numbers, and you were wishing they’d try to get you with those. What other consecutive integers multiply to 20? -4 and -5. And in that case which is the smaller one (again, x > y)? That’s right, -5. So while the amateur might pick A thinking that the absolute value of y has to be 4, you can answer confidently like Cedric in the clip above:

“That’s right. Fo *and* five.”

Statement 1 is not sufficient alone, but statement 2 guarantees that the numbers have to be positive, so the answer is C. And since you wished the GMAT would try to get you with that positive/negative trick, you were looking for it, you answered correctly, and you confidently moved on to the next problem knowing that you’re on a roll.

On the GMAT, don’t hope they don’t try to make it difficult with those tricks that got you in practice. Wish they would make it difficult with those tricks because you’re confident you won’t fall for them again. They hope; you wish.

*By Brian Galvin*

The beat itself, with the steady bass line followed by the singsongy “You know…,” is a positive affirmation in and of itself. You DO know. You know how to solve these problems. You know that if you can’t make sense of the question you can often find clues in the answer choices. You know that just getting started and writing down what “you know…” is often the key to lessening anxiety and getting the prompt into an actionable format. You know.

But the master message in this track is the way that the three most prominent rappers in the game start each verse:

“Thinking out loud…”

Why is that important to you, the GMAT test-taker? Because that’s the way that the greatest test-takers start GMAT problems, too.

“Thinking out loud…”

Thinking out loud on the GMAT means having a conversation with yourself about the problem. It means staying relaxed and getting your thoughts together before you panic about the challenge of the problem. It means understanding that many problems won’t have an obvious set of steps that you can begin right away; they’ll require you to start loose and take account of your assets and the strategies in your toolkit. One of the keys to success on the GMAT is thinking out loud.

Check the rapgenius.com annotation for why Drizzy/Nicki/Weezy start each verse that way: *All three MCs start their verses with some variation of “I’m thinkin’ out loud,” lending the song a breezy, friends-in-the-booth feeling. The recording was probably not a casual meeting, at all, but they’re good at sounding relaxed.*

For that reason alone, thinking out loud is important for you. Their recording wasn’t a casual meeting – as they go on to say in all their lyrics they’re some of the wealthiest and most sought-after people on the planet, so that meeting was a big deal – but they were able to approach it like it was. Similarly your GMAT is, indeed, a big deal, but casual, calm problem solving is the name of the game. Teaching yourself to think out loud – “so I know that x and y must be positive but z could be either positive or negative…” – is a great way to get your mind thinking calmly and proactively as opposed to the all-too-commmon reactive mode of “I don’t even know where to start.”

But thinking out loud isn’t just a psychological tool, it’s also a tactical tool. Tricky GMAT problems are notorious for forcing you to see your assets from different angles before you can package them in a way to solve the problem. Too often students are looking for “the way” to do a problem when really they should be looking for “a way”. Which seems like a trivial difference but going in with the mindset that there may be several ways to solve the problem allows you to be flexible and see assets, not liabilities. Consider the example:

If side AB measures 3 and side BC measures 4, what is the length of line segment BD?

(A) 7/5

(B) 9/5

(C) 12/5

(D) 18/5

(E) 23/5

While many will rush into an abyss of Pythagorean Theorem, thinking out loud can show you a calm, proactive way to do this.

“Thinking out loud…I know that it’s a right triangle so if AB = 3 and BC = 4, it’s a 3-4-5 and side AC is 5. And as much as I want side AC to be cut in half by point D I don’t think I can do that. There are three different right triangles so I could go nuts with Pythagorean Theorem but that’s a lot of work. Thinking out loud, I also know that the perimeter is 3 + 4 + 5 and the area is 1/2(base)(height) so that’s 1/2 (3)(4) = 6. But what can I do with that?

Thinking out loud…the answer choices are all divided by 5…why do they all look like that? The only 5 in the problem so far is the 5 that’s side AC. Why would I multiply or divide by that?

Thinking out loud…BD is definitely going to be smaller than 4 because there’s no way it’s longer than side BC. So it can’t be E. But what else do I know about BD? It’s perpendicular to side AC, and AC is 5 and that’s that 5 in the denominator. Thinking out loud…what if I drew the triangle so that AC was on the bottom and not on the side? Then BD would be the height of triangle ABC and AC would be the base…but wait, I already know the area is 6, so that area 1/2 (side BD)(5) has to be 6, which means that side BD has to be 12/5, answer choice C.”

The takeaway here is that almost no one sees the area relationship with side BD right away, and that’s okay. The key to working on problems like these is staying loose and filling in unknowns. You can’t simply do math on paper and follow a set of steps…you need to do some thinking out loud and talk to yourself as you solve. For each of Drake, Nicki, and Wayne the phrase “thinking out loud” is followed by a wild description of how much money they have. Follow that “thinking out loud” philosophy and you’ll be on a similar pace with the help of an elite MBA.

*By Brian Galvin*

*30 minutes is not a lot of time, many say, and because an effective essay needs to be well-organized and well-written it is therefore impossible to write a 30-minute essay.*

Let’s discuss the extent to which we disagree with that conclusion, in classic AWA style.

In the first line of a recent blog post, the author claimed that writing an effective AWA essay in 30 minutes was impossible. That argument certainly has at least some merit; after all, an effective essay needs to show the reader that it’s well-written and well-organized. But this argument is fundamentally flawed, most notably because the essay doesn’t need to “be” well-written as much as it needs to “appear” well-written. In the paragraphs that follow, I will demonstrate that the conclusion is flawed, and that it’s perfectly possible to write an effective AWA essay in 30 minutes or less.

Most conspicuously, the author leans on the 30-minute limit for writing the AWA essay, when in fact the 30 minutes only applies to the amount of time that the examinee spends actually typing at the test center. In fact, much of the writing can be accomplished well beforehand if the examinee chooses paragraph and sentence structures ahead of time. For this paragraph, as an example, the transition “most conspicuously” and the decision to refute that claim with “in fact” were made long before I ever stopped to type. So while the argument has merit that you only have 30 minutes to TYPE the essay, you actually have weeks and months to have the general outline written in your mind so that you don’t have to write it all from scratch.

Furthermore, the author claims that the essay has to be well-written. While that’s an ideal, it’s not a necessity; if you’ve followed this post thus far you’ve undoubtedly seen a number of organizational cues beginning and then transitioning within each paragraph. However, once a paragraph’s point has been established the reader is likely to follow the point even if it’s a hair out of scope. Does this sentence add value? Maybe not, but since the essay is so well-organized the reader will give you the benefit of the doubt.

Moreover, while the author is correct that 30 minutes isn’t a lot of time, he assumes that it’s not sufficient time to write something actually well-written. Since the AWA is a formulaic essay – like this one, you’ll be criticizing an argument that simply isn’t sound – you can be well-prepared for the format even if you don’t see the prompt ahead of time. Knowing that you’ll spend 2-3 minutes finding three flaws in the argument, then plug those flaws into a template like this, you have the blueprint already in place for how to spend that time effectively. Therefore, it really is possible to write a well-written AWA in under 30 minutes.

As discussed above, the author’s insistence that 30 minutes is not enough time to write an effective AWA essay lacks the proper logical structure to be true. The AWA isn’t limited to 30 minutes overall, and if you’ve prepared ahead of time the 30 minutes you do have can go to very, very good use. How do I know? This blog post here took just under 17 minutes…

*By Brian Galvin*