The post GMAT Rate Questions: Tackling Problems with Multiple Components appeared first on Veritas Prep Blog.

]]>To review, the key for dealing with this type of question is to apply the following rules:

- Rate * Time = Work
- Rates are additive in work questions.
- Rate and time have a reciprocal relationship.

For the questions involving partially completed jobs, we’ll throw in the addendum that a completed job can be designated as “1”’

And that’s it!

Here’s a question I saw on my recent practice test:

*Working alone at its constant rate, pump X pumped out ¼ of the water in a tank in 2 hours. Then pumps Y and Z started working and the three pumps, working simultaneously at their respective constant rates, pumped out the rest of the water in 3 hours. If pump Y, working alone at its constant rate, would have taken 18 hours to pump out the rest of the water, how many hours would it have taken pump Z, working alone at its constant rate, to pump out all of the water that was pumped out of the tank?*

*A) **6*

*B) **12*

*C) **15*

*D) **18*

*E) **24*

Okay, deep breath. Recall our three aforementioned rules. Next, let’s designate the rates for the pumps as x, y, and z, respectively.

If pump x can pump out ¼ of the water in 2 hours, then it would take 4*2 = 8 hours to pump out all the water alone. If pump x can complete 1 tank in 8 hours, then x = 1/8.

If x removes ¼ of the water on its own, then all three pumps working together have to remove the ¾ of the water left in the tank. We’re told that together they can do this in 3 hours. If x, y, and z together can do ¾ of the work in 3 hours, then x + y + z = (¾)/3 = 3/12 = ¼.

We’re told that y, alone, could have pumped out the rest of the water in 18 hours – again, there was ¾ of a tank left, so y = (¾)/18 = 1/24.

To summarize, we know that x = 1/8, y = 1/24, and x + y + z = ¼; Not so hard to solve for z, right?

1/8 + 1/24 + z = ¼

Multiply everything by 24, and we get:

3 + 1 + 24z = 6

24z = 2

z = 1/12.

That’s z’s rate. If rate and time have a reciprocal relationship, we know that it would take z 12 hours to pump out all the water of one tank alone. The answer is, therefore, B.

Takeaway: The joy of seeing new material from GMAC (Is joy the right word?) is the realization that no matter how many additional layers of complexity the question-writers throw at us, the old verities hold true. So when you see tough questions, slow down. Remind yourself that the strategies you’ve cultivated will unlock even the toughest problems. Then, dive in and discover, yet again, that these questions are never quite as hard as they appear at first glance.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post GMAT Rate Questions: Tackling Problems with Multiple Components appeared first on Veritas Prep Blog.

]]>The post Avoid Obtaining the Wrong Values in Percent Increase Questions appeared first on Veritas Prep Blog.

]]>A quick recap: percent increase questions can be identified (often literally) by the words “percent increase,” and tend to be word problems that don’t read in the most straightforward manner. The first step to take when working towards answering these questions is to be cautious and evaluate them carefully.

The second step is to, of course, use the percent increase formula – (new value – initial value) / (initial value) x 100%.

Let’s start by going through a sample GMAT practice problem:

*In 2005, 25 percent of the math department’s 40 students were female, and in 2007, 40 percent of the math department’s 65 students were female. What was the percent increase from 2005 to 2007 in the number of female students in the department?*

*A) 15%*

*B) 50%*

*C) 62.5%*

*D) 115%*

*E) 160%*

At first can be difficult to determine what the answer is for this question, but keep in mind that the best place to start looking is in the last sentence and/or the actual question that is posed. In this case, the new value is the number of female students in 2007, “the number of female students in the department?”

By working backwards through this problem, we would take 40% of 65 (our final value), which we can easily calculate as 0.4*65 (or 2/5*65), giving us a total of 26 students in 2007.

Our initial value must then be the number of female students in 2005, which we can get by calculating 25% of 40. 0.25*40 (or 1/4*40) leaves us with a total of 10 female students in 2005.

Breaking up the question up into smaller, more manageable chunks gives us the ability to plug 26 and 10 into the percent increase formula – (26‐10)/10 = 16/10 = 1.6 = 160%. Therefore, the correct answer is E.

This strategy of not trying to figure out the conclusion without evaluating all the separate parts of the question is important to tackle percent change GMAT problems, but can be applied across a variety of quantitative questions. Understanding that these questions can be much more manageable, and are more about strategy versus understanding complex math concepts, is the key to success on the Quantitative Section.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Ashley Triscuit, a Veritas Prep GMAT instructor based in Boston.*

The post Avoid Obtaining the Wrong Values in Percent Increase Questions appeared first on Veritas Prep Blog.

]]>The post So, You’re Terrible at Integrated Reasoning… appeared first on Veritas Prep Blog.

]]>For the past several years, it was a matter of debate as to whether business schools evaluated applicants on the basis of the Integrated Reasoning Section. Admissions offices can be slow to adapt to changes in standardized tests, waiting for enough points of comparison to consider whether the change corresponds with other ways that applicants are assessed. But in the past 1-2 MBA admissions cycles, it has become apparent that admissions teams are ready to actively add the Integrated Reasoning Section as a factor in their assessments.

But this tough nut of a section is not inundated with years of Official Guide and test-prep-company-generated questions like the Quantitative and Verbal Sections. After taking a practice test or two, you may find yourself scoring a 2/8 or 3/8 and completely at a loss on how to improve your Integrated Reasoning score.

The first step you can take to improve your IR score is understanding what types of questions to expect on the Integrated Reasoning Section, and then adjust your approach to each question with a corresponding appropriate strategy. The Integrated Reasoning questions can be bucketed into four categories:

- Table Analysis: sorting given tables and making the most of information presented
- Graphics Interpretation: reading and interpreting a graph
- Multi-Source Reasoning: using all the given information to assess statements
- Two-Part Analysis: determine the correctness of two parts of a question (all parts need to be selected correctly, with no partial credit given!)

What many test takers fail to recognize that that the IR Section is not necessarily its own unique section, but rather, it is a “summary” section – you can apply all the strategies you have learned for the Quantitative and Verbal Sections to these types of questions. Anticipation, process of elimination, etc. Integrated Reasoning is multi-faceted, as should be your corresponding strategies.

The next step is practice, practice, practice with the resources you do have available. Timing is hands-down the biggest challenge for test takers on this section, so make sure you’ve completed all the gimmes that the MBA.com website provides (with 48 questions recently released for additional practice).

And if you feel you need more help preparing for the IR Section, consider checking out Veritas Prep’s GMAT course offerings – we were the leader in test preparation companies anticipating strategies and providing dedicated Integrated Reasoning practice. Assess areas that you have made careless mistakes, ways you could better sort tables and charts, and other areas where you could have gotten to the conclusion more readily over being mired down into nitty gritty, and unnecessary, details.

With a bit of understanding and preparation, and figuring out how you are able to best read, assess, review, and interpret tables and information, you should be able to edge closer to the coveted 8/8 IR score.

*Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Ashley Triscuit, a Veritas Prep GMAT instructor based in Boston.*

The post So, You’re Terrible at Integrated Reasoning… appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Why Critical Reasoning Needs Your Complete Attention on the GMAT! appeared first on Veritas Prep Blog.

]]>*Tiger beetles are such fast runners that they can capture virtually any nonflying insect. However, when running toward an insect, a tiger beetle will intermittently stop and then, a moment later, resume its attack. Perhaps the beetles cannot maintain their pace and must pause for a moment’s rest; but an alternative hypothesis is that while running, tiger beetles are unable to adequately process the resulting rapidly changing visual information and so quickly go blind and stop. *

*Which of the following, if discovered in experiments using artificially moved prey insects, would support one of the two hypotheses and undermine the other? *

*(A)** When a prey insect is moved directly toward a beetle that has been chasing it, the beetle immediately stops and runs away without its usual intermittent stopping. *

*(B)** In pursuing a swerving insect, a beetle alters its course while running and its pauses become more frequent as the chase progresses.*

*(C)** In pursuing a moving insect, a beetle usually responds immediately to changes in the insect’s direction, and it pauses equally frequently whether the chase is up or down an incline. *

*(D)** If, when a beetle pauses, it has not gained on the insect it is pursuing, the beetle generally ends its pursuit. *

*(E)** The faster a beetle pursues an insect fleeing directly away from it, the more frequently the beetle stops.*

First, take a look at the argument:

- Tiger beetles are very fast runners.
- When running toward an insect, a tiger beetle will intermittently stop and then, a moment later, resume its attack.

There are two hypotheses presented for this behavior:

- The beetles cannot maintain their pace and must pause for a moment’s rest.
- While running, tiger beetles are unable to adequately process the resulting rapidly changing visual information and so quickly go blind and stop.

We need to support one of the two hypotheses and undermine the other. We don’t know which one will be supported and which will be undermined. How will we support/undermine a hypothesis?

*The beetles cannot maintain their pace and must pause for a moment’s rest.*

Support: Something that tells us that they do get tired. e.g. going uphill they pause more.

Undermine: Something that says that fatigue plays no role e.g. the frequency of pauses do not increase as the chase continues.

*While running, tiger beetles are unable to adequately process the resulting rapidly changing visual information and so quickly go blind and stop.*

Support: Something that says that they are not able to process changing visual information e.g. as speed increases, frequency of pauses increases.

Undermine: Something that says that they are able to process changing visual information e.g. it doesn’t pause on turns.

Now, we need to look at each answer choice to see which one supports one hypothesis and undermines the other. Focus on the impact each option has on our two hypotheses:

*(A) When a prey insect is moved directly toward a beetle that has been chasing it, the beetle immediately stops and runs away without its usual intermittent stopping.*

This undermines both hypotheses. If the beetle is able to run without stopping in some situations, it means that it is not a physical ailment that makes him take pauses. He is not trying to catch his breath – so to say – nor is he adjusting his field of vision.

*(B) In pursuing a swerving insect, a beetle alters its course while running and its pauses become more frequent as the chase progresses.*

If the beetle alters its course while running, it is obviously processing changing visual information and changing its course accordingly while running. This undermines the hypothesis “it cannot process rapidly changing visual information”. However, if the beetle pauses more frequently as the chase progresses, it is tiring out more and more due to the long chase and, hence, is taking more frequent breaks. This supports the hypothesis, “it cannot maintain its speed and pauses for rest”.

Answer choice B strengthens one hypothesis and undermines the other. This must be the answer, but let’s check our other options, just to be sure:

*(C) In pursuing a moving insect, a beetle usually responds immediately to changes in the insect’s direction, and it pauses equally frequently whether the chase is up or down an incline.*

This answer choice undermines both hypotheses. If the beetle responds immediately to changes in direction, it is able to process changing visual information. In addition, if the beetle takes similar pauses going up or down, it is not the effort of running that is making it take the pauses (otherwise, going up, it would have taken more pauses since it takes more effort going up).

*(D) If, when a beetle pauses, it has not gained on the insect it is pursuing, the beetle generally ends its pursuit.*

This answer choice might strengthen the hypothesis that the beetle is not able to respond to changing visual information since it decides whether it is giving up or not after pausing (in case there is a certain stance that tells us that it has paused), but it doesn’t actually undermine the hypothesis that the beetle pauses to rest. It is very possible that it pauses to rest, and at that time assesses the situation and decides whether it wants to continue the chase. Hence, this option doesn’t undermine either hypothesis and cannot be our answer.

*(E) The faster a beetle pursues an insect fleeing directly away from it, the more frequently the beetle stops.*

This answer choice strengthens both of the hypotheses. The faster the beetle runs, the more rest it would need, and the more rapidly visual information would change causing the beetle to pause. Because this option does not undermine either hypothesis, it also cannot be our answer.

Only answer choice B strengthens one hypothesis and undermines the other, therefore, our answer must be B.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Why Critical Reasoning Needs Your Complete Attention on the GMAT! appeared first on Veritas Prep Blog.

]]>The post How to Simplify Sequences on the GMAT appeared first on Veritas Prep Blog.

]]>If you are one of the many people who fear and dislike sequences, your main consolation should come from the fact that the main weapon in the question writer’s arsenal is the very fear these questions might elicit. And if you have been a reader of this blog for any length of time, you know that the best way to combat this anxiety is to dive in and convert abstractions into something concrete, either by listing out some portion of the sequence, or by using the answer choices and working backwards.

Take this question for example:

*For a certain set of numbers, if x is in the set, then x – 3 is also in the set. If the number 1 is in the set, which of the following must also be in the set?** *

*I. **4*

*II. **-1*

*III. **-5*

*A) **I only*

*B) **II only*

*C) **III only*

*D) **I and II*

*E) **II and III *

Okay, so let’s list out the elements in this set. We know that 1 is in the set. If x= 1, then x – 3 = -2. So -2 is in the set. If x = -2 is in the set, then x – 3 = -5. So -5 is in the set.

By this point, the pattern should be clear: each term is three less than the previous term, giving us a sequence that looks like this: 1, -2, -5, -8, -11….

So we look at our options, and see we that only III is true. And we’re done. That’s it. The answer is C.

*Sure, Dave*, you may say. *That is much easier than any question I’m going to see on the GMAT. * First, this is an official question, so I’m not sure where you’re getting the idea that you’d never see a question like this. Second, you’d be surprised by how many test-takers get this wrong.

There is the temptation to assume that if 1 is in the set, then 4 must also be in the set. And note that this is, in fact, a possibility. If x = 4, then x – 3 = 1. But the question asks us what “must be” in the set. So it’s possible that 4 is in our set. But it’s also possible our set begins with 1, in which case 4 would not be included. This little wrinkle is enough to generate a substantial number of incorrect responses.

*Still, surely the questions get harder than this.* Well, yes. They do. *So what are you waiting for? *I’m not sure where this testy impatience is coming from, but if you insist:

*The sequence a _{1}, a_{2}, a_{3}, . . , a_{n} of n integers is such that a_{k} = k if k is odd and a_{k} = -a_{k-1} if k is even. Is the sum of the terms in the sequence positive?*

*1) **n is odd*

*2) **a _{n} is positive*

*Yikes!* Hey, you asked for a harder one. This question looks far more complicated than the previous one, but we can attack it the same way. Let’s establish our sequence:

*a _{1} *is the first term in the sequence. We’re told that

*a _{2} *is the second term in the sequence. We’re told that

So, here’s our sequence so far: 1, -1…

Let’s keep going.

a* _{3}* is the third term in the sequence. Remember that

*a _{4} *is the fourth term in the sequence. Remember that

Now our sequence looks like this: 1, -1, 3, -3…

By this point we should see the pattern. Every odd term is a positive number that is dictated by its place in the sequence (the first term = 1, the third term = 3, etc.) and every even term is simply the previous term multiplied by -1.

We’re asked about the sum:

After one term, we have 1.

After two terms, we have 1 + (-1) = 0.

After three terms, we have 1 + (-1) + 3 = 3.

After four terms, we have 1 + (-1) + 3 + (-3) = 0.

Notice the trend: after every odd term, the sum is positive. After every even term, the sum is 0.

So the initial question, “*Is the sum of the terms in the sequence positive?” c*an be rephrased as,* “Are there an ODD number of terms in the sequence?”*

Now to the statements. Statement 1 tells us that there are an odd number of terms in the sequence. That clearly answers our rephrased question, because if there are an odd number of terms, the sum will be positive. This is sufficient.

Statement 2 tells us that *a _{n} is positive. a_{n} is *the last term in the sequence. If that term is positive, then, according to the pattern we’ve established, that term must be odd, meaning that the sum of the sequence is positive. This is also sufficient. And the answer is D, either statement alone is sufficient to answer the question.

Takeaway: sequence questions are nothing to fear. Like everything else on the GMAT, the main obstacle we need to overcome is the self-fulfilling prophesy that we don’t know how to proceed, when, in fact, all we need to do is simplify things a bit.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post How to Simplify Sequences on the GMAT appeared first on Veritas Prep Blog.

]]>The post You’re Fooling Yourself: The GMAT is NOT the SAT! appeared first on Veritas Prep Blog.

]]>There are pros and cons to applying to business school entry straight out of undergraduate – your application lacks the core work experience that many of the higher-tier programs prefer, but unlike the competition, you have not only taken a standardized test in the past 6 years, but you are also (likely) still in the studying mindset and know (versus trying to remember) exactly what it takes to prepare for a difficult exam.

However, you may also fall into a common trap that many younger test takers find themselves in – you decide to tackle the GMAT like your old and recent friend, the SAT.

Now, are there similarities between the GMAT and SAT? Of course.

For starters, the SAT and GMAT are both multiple-choice standardized exams. The math section of the SAT covers arithmetic, geometry, and algebra, just like the quantitative section of the GMAT, with some overlap in statistics and probability. Both exams test a core, basic understanding of English grammar, and ask you to answer questions based on your comprehension of dry, somewhat complex reading passages. The SAT and GMAT also both require you write essays (although the essay on the SAT is now optional), and timing and pacing are issues on both exams, though perhaps more so on the GMAT.

But this is largely where the overlap ends. So, does that mean everything you know and prepped for the SAT should be thrown out the window?

Not necessarily, but it does require a fundamental shift in thinking. While applying your understanding of the Pythagorean Theorem, factorization, permutations, and arithmetic sequences from the SAT will certainly help you begin to tackle GMAT quantitative questions, there are key differences in what the GMAT is looking to assess versus the College Board, and with that, the strategy in tackling these questions should also be quite different.

Simply put, the GMAT is testing how you think, not what you know. This makes sense, when you think about what types of skills are required in business school and, eventually, in the management of business and people. GMAC doesn’t hide what the GMAT is looking to assess – in fact, goals of the GMAT’s assessment are clearly stated on its website:

*The GMAT exam is designed to test skills that are highly important to business and management programs. It assesses analytical writing and problem-solving abilities, along with the data sufficiency, logic, and critical reasoning skills that are vital to real-world business and management success. In June 2012, the GMAT exam introduced Integrated Reasoning, a new section designed to measure a test taker’s ability to evaluate information presented in new formats and from multiple sources─skills necessary for management students to succeed in a technologically advanced and data-rich world.*

To successfully show that you are a candidate worth considering, in your preparation for the exam, make sure you consider what the right strategy and approach will be. Strategy, strategy, strategy. You need to understand which rabbit holes the GMAT can take you down, what tricks not to fall for (especially via misdirection), and how identification of question types can best inform the next steps you take.

An additional, and really, really important point is to keep in mind is that the GMAT is a computer-adaptive exam, not a pen-and-paper test.

Computer-adaptive means that your answer selection dictates the difficulty level of the next question – stacking itself up to a very accurate assessment of how easily you are able to answer easy, medium, and hard questions. Computer-adaptive also means you are not able to skip around, or go back to questions… including the reading comprehension ones. Just like on any game show, you must select your final answer before moving on.

As a computer-adaptive test, the GMAT not only punishes pacing issues, but can be even more detrimental to those who rush and make careless mistakes in the beginning. To wage war against the CAT format, test takers must be careful and methodical in assessing and answering test questions correctly.

Bottom line: don’t treat the GMAT like the SAT, or assume that because you did well on the SAT, you will also do so on the GMAT (or, vice versa). Make sure you are aware of the components of the GMAT that are different and where the similarities between the two tests end.

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

*By Ashley Triscuit, a Veritas Prep GMAT instructor based in Boston.*

The post You’re Fooling Yourself: The GMAT is NOT the SAT! appeared first on Veritas Prep Blog.

]]>The post Solving GMAT Standard Deviation Problems By Using as Little Math as Possible appeared first on Veritas Prep Blog.

]]>So, I think it’s time for me to coin an axiom: the more painful the traditional formula associated with a given topic, the simpler the actual calculations will be on the GMAT. (Please note, though the axiom is awaiting official mathematical verification by Veritas’ hard-working team of data scientists, the anecdotal evidence in support of the axiom is overwhelming.)

So, let’s talk standard deviation. If you’re like my students, your first thought is to start assembling a list of increasingly frantic questions: *Do we need to know that horrible formula I learned in Stats class?* (No.) *Do we need to know the relationship between variance and Standard deviation?* (You just need to know that there is a relationship, and that if you can solve for one, you can solve for the other.) Etc.

So, rather than droning on about what we don’t need to know, let’s boil down what we do need to know about standard deviation. The good news – it isn’t much. Just make sure you’ve internalized the following:

- The standard deviation is a measure of the dispersion the elements of the set around mean. The farther away the terms are from the mean, the larger the standard deviation.
- If we were to increase or decrease each element of the set by “x,” the standard deviation would remain unchanged.
- If we were to multiply each element of the set by “x,” the standard deviation would also be multiplied by “x.”
- If the mean of a set is “m” and the standard deviation is “d,” then to say that something is within 3 standard deviations of a set is to say that it falls within the interval of (m – 3d) to (m + 3d.) And to say that something is within 2 standard deviations of the mean is to say that it falls within the interval of (m – 2d) to (m + 2d.)

That’s basically it. Not anything to get too worked up about. So, let’s see some of these principles in action to substantiate the claim that we won’t have to do too much arithmetical grinding on these types of questions:

*If d is the standard deviation of x, y, z, what is the standard deviation of x+5, **y+5, z+5 ? *

*A) d
B) 3d
C) 15d
D) d+5
E) d+15
*

If our initial set is x, y, z, and our new set is x+5, y+5, and z+5, then we’re adding the same value to each element of the set. We already know that adding the same value to each element of the set does not change the standard deviation. Therefore, if the initial standard deviation was d, the new standard deviation is also d. We’re done – the answer is A. (You can see this with a simple example. If your initial set is {1, 2, 3} and your new set is {6, 7, 8} the dispersion of the set clearly hasn’t changed.)

*Surely the questions get harder than this*, you say. They do, but if you know the aforementioned core concepts, they’re all quite manageable. Here’s another one:

*Some water was removed from each of 6 tanks. If standard deviation of the volumes of water at the beginning was 10 gallons, what was the standard deviation of the volumes at the end? *

*1) For each tank, 30% of water at the beginning was removed
2) The average volume of water in the tanks at the end was 63 gallons *

We know the initial standard deviation. We want to know if it’s possible to determine the new standard deviation after water is removed. To the statements we go!

**Statement 1:** If 30% of the water is removed from each tank, we know that each term in the set is multiplied by the same value: 0.7. Well, if each term in a set is multiplied by 0.7, then the standard deviation of the set is also multiplied by 0.7. If the initial standard deviation was 10 gallons, then the new standard deviation would be 10*(0.7) = 7 gallons. And we don’t even need to do the math – it’s enough to see that it’s possible to calculate this number. Therefore, Statement 1 alone is sufficient.

**Statement 2:** Knowing the average of a set is not going to tell us very much about the dispersion of the set. To see why, imagine a simple case in which we have two tanks, and the average volume of water in the tanks is 63 gallons. It’s possible that each tank has exactly 63 gallons and, if so, the standard deviation would be 0, as everything would equal the mean. It’s also possible to have one tank that had 126 gallons and another tank that was empty, creating a standard deviation that would, of course, be significantly greater than 0. So, simply knowing the average cannot possibly give us our standard deviation. Statement 2 alone is not sufficient to answer the question.

And the answer is A.

Maybe at this point you’re itching for more of a challenge. Let’s look at a slightly tougher one:

*7.51; 8.22; 7.86; 8.36 *

8.09; 7.83; 8.30; 8.01

7.73; 8.25; 7.96; 8.53

*A vending machine is designed to dispense 8 ounces of coffee into a cup. After a test that recorded the number of ounces of coffee in each of 1000 cups dispensed by the vending machine, the 12 listed amounts, in ounces, were selected from the data above. If the 1000 recorded amounts have a mean of 8.1 ounces and a standard deviation of 0.3 ounces, how many of the 12 listed amounts are within 1.5 standard deviations of the mean?** *

*A)**Four*

*B) **Six*

*C) **Nine*

*D) **Ten *

*E) **Eleven*

Okay, so the standard deviation is 0.3 ounces. We want the values that are within 1.5 standard deviations of the mean. 1.5 standard deviations would be (1.5)(0.3) = 0.45 ounces, so we want all of the values that are within 0.45 ounces of the mean. If the mean is 8.1 ounces, this means that we want everything that falls between a lower bound of (8.1 – 0.45) and an upper bound of (8.1 + 4.5). Put another way, we want the number of values that fall between 8.1 – 0.45 = 7.65 and 8.1 + 0.45 = 8.55.

Looking at our 12 values, we can see that only one value, 7.51, falls outside of this range. If we have 12 total values and only 1 falls outside the range, then the other 11 are clearly within the range, so the answer is E.

As you can see, there’s very little math involved, even on the more difficult questions.

Takeaway: remember the axiom that the more complex-looking the formula is for a concept, the simpler the calculations are likely to be on the GMAT. An intuitive understanding of a topic will always go a lot further on this test than any amount of arithmetical virtuosity.

**GMATPrep questions courtesy of the Graduate Management Admissions Council.*

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles written by him here.*

The post Solving GMAT Standard Deviation Problems By Using as Little Math as Possible appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Using Visual Symmetry to Solve GMAT Probability Problems appeared first on Veritas Prep Blog.

]]>*The figure shown represents a board with 4 rows of pegs, and at the bottom of the board are 4 cells numbered 1 to 4. Whenever the ball shown passes through the opening between two adjacent pegs in the same row, it will hit the peg directly beneath the opening. The ball then has the probability 1/2 of passing through the opening immediately to the left of that peg and probability 1/2 of passing through the opening immediately to the right. What is the probability that when the ball passes through the first two pegs at the top it will end in cell 2?*

*(A) 1/16*

*(B) 1/8*

*(C) 1/4*

*(D) 3/8*

*(E) 1/2*

First, understand the diagram. There are small pegs arranged in rows and columns. The ball falls between two adjacent pegs and hits the peg directly below. When it does, there are two ways it can go – either to the opening on the left or to the opening on the right. The probability of each move is equal, i.e. 1/2.

The arrow show the first path the ball takes. It is dropped between the top two pegs, hits the peg directly below it, and then either drops to the left side or to the right. The same process will be repeated until the ball falls into one of the four cells – 1, 2, 3 or 4.

**Method 1: Using Symmetry**

Now that we understand this process, let’s examine the symmetry in this diagram.

Say we flip the image along the vertical axis – what do we get? The figure is still exactly the same, but now the order of cells is reversed to be 4, 3, 2, 1. The pathways in which you could reach Cell 1 are now the pathways in which you can use to reach Cell 4.

OR think about it like this:

To reach Cell 1, the ball needs to turn left-left-left.

To reach Cell 4, the ball needs to turn right-right-right.

Since the probability of turning left or right is the same, the situations are symmetrical. This will be the same case for Cells 2 and 3. Therefore, by symmetry, we see that:

The probability of reaching Cell 1 = the probability of reaching Cell 4.

Similarly:

The probability of reaching Cell 2 = the probability of reaching Cell 3. (There will be multiple ways to reach Cell 2, but the ways of reaching Cell 3 will be similar, too.)

The total probability = the probability of reaching Cell 1 + the probability of reaching Cell 2 + the probability of reaching Cell 3 + the probability of reaching Cell 4 = 1

Because we know the probability of reaching Cells 1 and 4 are the same, and the probabilities of reaching Cells 2 and 3 are the same, this equation can be written as:

2*(the probability of reaching Cell 1) + 2*(the probability of reaching Cell 2) = 1

Let’s find the probability of reaching Cell 1:

After the first opening (not the peg, but the opening between pegs 1 and 2 in the first row), the ball moves left (between pegs 1 and 2 in second row) or right (between pegs 2 and 3 in second row). It must move left to reach Cell 1, and the probability of this = 1/2.

After that, the ball must move left again – the probability of this occurring is also 1/2, since probability of moving left or right is equal. Finally, the ball must turn left again to reach Cell 1 – the probability of this occurring is, again, 1/2. This means that the total probability of the ball reaching Cell 1 = (1/2)*(1/2)*(1/2) = 1/8

Plugging this value into the equation above:

2*(1/8) + 2 * probability of reaching Cell 2 = 1

Therefore, the probability of reaching Cell 2 = 3/8

**Method 2: Enumerating the Cases**

You can also answer this question by simply enumerating the cases.

At every step after the first drop between pegs 1 and 2 in the first row, there are two different paths available to the ball – either it can go left or it can go right. This happens three times and, hence, the total number of ways in which the ball can travel is 2*2*2 = 8

The ways in which the ball can reach Cell 2 are:

Left-Left-Right

Left-Right-Left

Right-Left-Left

So, the probability of the ball reaching Cell 2 is 3/8.

Note that here there is a chance that we might miss some case(s), especially in problems that involve many different probability options. Hence, enumerating should be the last option you use when tackling these types of questions on the GMAT.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Using Visual Symmetry to Solve GMAT Probability Problems appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week: Mother Knows Best appeared first on Veritas Prep Blog.

]]>In honor of mothers everywhere and in preparation for your GMAT, let’s consider one of the things that makes mothers so great. Even today as an adult, you’ll likely find that if you live a flight or lengthy drive/train from home, when you leave your hometown, your mother loads you up with snacks for the plane, bottled water for the drive, hand sanitizer for the airport, etc. Why is that? When it comes to their children – no matter how old or independent – mothers are prepared for every possible situation.

What if you get hungry on the plane, or you’re delayed at your connecting airport and your credit card registers fraud because of the strange location and you’re unable to purchase a meal?! She doesn’t want you getting sick after touching the railing on an escalator, so she found a Purell bottle that’s well less than the liquid limit at security (and also packed a clear plastic bag for you and your toiletries). Moms do not want their children caught in a unique and harmful (or inconvenient) situation, so they plan for all possible occurrences.

And that’s how you should approach Data Sufficiency questions on the GMAT.

When a novice test-taker sees the problem:

*What is the value of x?*

*(1) x^2 = 25*

*(2) 8 < 2x < 12*

He may quickly say “oh it’s 5” to both of them. 5 is the square root of 25, and the second equation simplifies to 4 < x < 6, and what number is between 4 and 6? It’s 5.

But your mother would give you caution, particularly because her mission is to avoid *negative* outcomes for you. She’d be prepared for a negative value of x (-5 satisfies Statement 1) and for nonintegers (x could be 4.00001 or 5.9999 given Statement 2). Knowing those contingencies, she’d wisely recognize that you need both statements to guarantee one exact answer (5) for x.

Just like she’d tie notes to your mittens or pin them on your shirt when you were a kid so that you wouldn’t forget (and like now she’ll text you reminders for your grandmother’s birthday or to RSVP to your cousin’s wedding), your mom would suggest that you keep these unique occurrences written down at the top of your noteboard on test day: Negative, Zero, Noninteger, Infinity, Biggest/Smallest Value. That way, you’ll always check for those unique situations before you submit your answer, and you’ll have a much better shot at a challenge-level problem like this:

*The product of consecutive integers a, b, c, and d is 5,040. What is the value of d?*

*(1) d is prime*

*(2) d < c < b < a*

So where does mom come in?

Searching for consecutive integers, you’ll likely factor 5,040 to 7, 8, 9, and 10 (the 10 is obvious because 5,040 ends in a 0, and then when you see that the rest is 504 and know that’s divisible by 9, and you’re just about done). And so with Statement 1, you’ll see that the only prime number in the bunch is 7, meaning that d = 7 and Statement 1 is sufficient. And Statement 2 seems to support that exact same conclusion – as the smallest of the 4 integers, d is, again, 7.

Right?

Enter mom’s notes: did you consider zero? (irrelevant) Did you consider nonintegers? (they specified integers, so irrelevant) Did you consider negative numbers?

That’s the key. The four consecutive integers could be -10, -9, -8, and -7 meaning that d could also be -10. That wasn’t an option for Statement 1 (only positives are prime) and so since you did the “hard work” of factoring 5,040 and then finally got to where Statement 2 was helpful, there’s a high likelihood that you were ready to be finished and saw 7 as the only option for Statement 2.

This is why mom’s reminders are so helpful: on harder problems, the “special circumstances” numbers that mom wants to make sure you’re always prepared for tend to be afterthoughts, having taken a backseat to the larger challenges of math. But mother knows best – you may not be stranded in a foreign airport without a snack and your car might not stall in the desert when you don’t have water, but in the rare event that such a situation occurs she wants you to be prepared. Keep mom’s list handy at the top of your noteboard (alas, the Pearson/Vue center won’t allow you to pin it to your shirt) and you, like mom, will be prepared for all situations.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week: Mother Knows Best appeared first on Veritas Prep Blog.

]]>The post How to Avoid Trap Answers On GMAT Data Sufficiency Questions appeared first on Veritas Prep Blog.

]]>This tendency can manifest itself in any number of ways. Sometimes it means producing a cliché rather than straining for a more precise and original way to render a scene. More often, it means procrastinating – cleaning my desk or refreshing espn.com for the 700th time – rather than doing any writing at all. The point is that my brain is often groping for an easy way out. This is how we’re all wired; it’s a dangerous instinct, both in writing and on the GMAT.

This problem is most acute on Data Sufficiency questions. Most test-takers like to go on auto-pilot when they can, relying on simple rules and heuristics rather than proving things to themselves – if I have the slope of a line and one point on that line, I know every point on that line; if I have two linear equations and two variables I can solve for both variables, etc.

This is not in and of itself a problem, but if you find your brain shifting into path-of-least-resistance mode and thinking that you’ve identified an answer to a question within a few seconds, be very suspicious about your mode of reasoning. This is not to say that you should simply assume that you’re wrong, but rather to encourage you to try to prove that you’re right.

Here’s a classic example of a GMAT Data Sufficiency question that appears to be easier than it is:

*Joanna bought only $.15 stamps and $.29 stamps. How many $.15 stamps did she buy?*

*1) She bought $4.40 worth of stamps*

*2) She bought an equal number of $.15 stamps and $.29 stamps*

Here’s how the path-of-least-resistance part of my brain wants to evaluate this question. Okay, for Statement 1, there could obviously be lots of scenarios. If I call “F” the number of 15 cent stamps and “T” the number of 29 cent stamps, all I know is that .15F + .29T = 4.40. So that statement is not sufficient. Statement 2 is just telling me that F = T. Clearly no good – any number could work. And together, I have two unique linear equations and two unknowns, so I have sufficiency and the answer is C.

This line of thinking only takes a few seconds, and just as I need to fight the urge to take a break from writing to watch YouTube clips of *Last Week Tonight* with John Oliver because it’s part of my novel “research,” I need to fight the urge to assume that such a simple line of reasoning will definitely lead me to the correct answer to this question.

So let’s rethink this. I know for sure that the answer cannot be E – if I can solve for the unknowns when I’m testing the statements together, I clearly have sufficiency there. And I know for sure that the answer cannot be that Statement 2 alone is sufficient. If F = T, there are an infinite number of values that will work.

So, let’s go back to Statement 1. I know that I cannot purchase a fraction of a stamp, so both F and T must be integer values. That’s interesting. I also know that the total amount spent on stamps is $4.40, or 440 cents, which has a units digit of 0. When I’m buying 15-cent stamps, I can spend 15 cents if I buy 1 stamp, 30 cents if I buy two, etc.

Notice that however many I buy, the units digit must either be 5 or 0. This means that the units digit for the amount I spend on 29 cent stamps must also be 5 or 0, otherwise, there’d be no way to get the 0 units digit I get in 440. The only way to get a units digit of 5 or 0 when I’m multiplying by 29 is if the other number ends in 5 or 0 . In other words, the number of 29-cent stamps I buy will have to be a multiple of 5 so that the amount I spend on 29-cent stamps will end in 5 or 0.

Here’s the sample space of how much I could have spent on 29-cent stamps:

Five stamps: 5*29 = 145 cents

Ten stamps: 10*29 = 290 cents

Fifteen stamps: 15* 29 = 435 cents

Any more than fifteen 29-cent stamps and I ‘m over 440, so these are the only possible options when testing the first statement.

Let’s evaluate: say I buy five 29-cent stamps and spend 145 cents. That will leave me with 440 – 145 = 295 cents left for the 15-cent stamps to cover. But I can’t spend exactly 295 cents by purchasing 15-cent stamps, because 295 is not a multiple of 15.

Say I buy ten 29-cent stamps, spending 290 cents. That leaves 440 – 290 = 150. Ten 15-cent stamps will get me there, so this is a possibility.

Say I buy fifteen 29-cent stamps, spending 435 cents. That leaves 440 – 435 = 5. Clearly that’s not possible to cover with 15-cent stamps.

Only one option works: ten 29-cent stamps and ten 15-cent stamps. Because there’s only one possibility, Statement 1 alone is sufficient, and the answer here is actually A.

Takeaway: Don’t take the GMAT the way I write fiction. Following the path of least-resistance will often lead you right into the trap the question writer has set for unsuspecting test-takers. If something feels too easy on a Data Sufficiency, it probably is.

**Official Guide question courtesy of the Graduate Management Admissions Council.*

**GMAT prep courses** starting all the time. And be sure to follow us on **Facebook**, **YouTube**, **Google+ **and **Twitter**!

The post How to Avoid Trap Answers On GMAT Data Sufficiency Questions appeared first on Veritas Prep Blog.

]]>