But we also support everyone’s desire to leave no stone unturned in pursuit of a high GMAT score and everyone’s intellectual curiosity with regard to computer-adaptive testing. So with the full disclosure that these items won’t help you game the system and that your best move is to turn that intellectual curiosity toward mastering GMAT concepts and strategies, here are four major reasons that your response pattern — did you miss more questions early in the test vs. late in the test; did you miss consecutive questions or more sporadic questions, etc. — won’t help you predict your score:

**1) The all-important A-parameter.**

Item Response Theory incorporates three metrics for each “item” (or “question” or “problem”): the B parameter is the closest measurement to pure “difficulty”. The C parameter is essentially a measure of likelihood that a correct answer can be guessed. And the A parameter tells the scoring system how much to weight that item. Yes, some problems “count” more than others do (and not because of position on the test).

Why is that? Think of your own life; if you were going to, say, buy a condo in your city, you’d probably ask several people for their opinion on things like the real estate market in that area, mortgage rates, the additional costs of home ownership, the potential for renting it if you were to move, etc. And you’d value each opinion differently. Your very risk-loving friend may not have the opinion to value highest on “Will I be able to sell this at a profit if I get transferred to a new city?” (his answer is “The market always goes up!”) whereas his opinion on the neighborhood itself might be very valuable (“Don’t underestimate how nice it will be to live within a block of the blue line train”). Well, GMAT questions are similar: Some are extremely predictive (e.g. 90% of those scoring over 700 get it right, and only 10% of those scoring 690 or worse do) and others are only somewhat predictive (60% of those 700+ get this right, but only 45% of those below 700 do; here getting it right whispers “above 700″ whereas before it screams it).

So while you may want to look at your practice test and try to determine where it’s better to position your “misses,” you’ll never know the A-values of any of the questions, so you just can’t tell which problems impacted your score the most.

**2) Content balancing.**

OK, you might then say, the test should theoretically always be trying to serve the highest value questions, so shouldn’t the larger A-parameters come out first? Not necessarily. The GMAT values balanced content to a very high degree: It’s not fair if you see a dozen geometry problems and your friend only sees two, or if you see the less time-consuming Data Sufficiency questions early in the test while someone else budgets their early time on problem solving and gets a break when the last ten are all shorter problems. So the test forces certain content to be delivered at certain times, regardless of whether the A-parameter for those problems is high or low. By the end of the test you’ll have seen various content areas and A-parameters… You just won’t know where the highest value questions took place.

**3) Experimental items.**

In order to know what those A, B, and C parameters are, the GMAT has to test its questions on a variety of users. So on each section, several problems just won’t count — they’re only there for research. And this can be true of practice tests, too (the Veritas Prep tests, for example, do contain experimental questions). So although your analysis of your response pattern may say that you missed three in a row on this test and gotten eight right in a row on the other, in reality those streaks could be a lot shorter if one or more of those questions didn’t count. And, again, you just won’t know whether a problem counted or not, so you can’t fully read into your response pattern to determine how the test should have been scored.

**4) Item delivery vs. Score calculation.**

One common prediction people make about GMAT scoring is that missing multiple problems in a row hurts your score substantially more than missing problems scattered throughout the test. The thinking goes that after one question wrong the system has to reconsider how smart it thought you were; then after two it knows for sure that you’re not as smart as advertised; and by the third it’s in just asking “How bad is he?” In reality, however, as you’ve read above, the “get it right –> harder question; get it wrong –> easier question” delivery system is a bit more nuanced and inclusive of experimentals and content balancing than people think. So it doesn’t work quite like the conventional wisdom suggests.

What’s more, even when the test delivers you an easier question and then an even easier question, it’s not directly calculating your score question by question. It’s estimating your score question-by-question in order to serve you the most meaningful questions it can, but it calculates your score by running its algorithm across all questions you’ve seen. So while missing three questions in a row might lower the current estimate of your ability and mean that you’ll get served a slightly easier question next, you can also recover over the next handful of questions. And then when the system runs your score factoring in the A, B, and C parameters of all of your responses to “live” (not experimental) questions, it doesn’t factor in the order in which those questions were presented — it only cares about the statistics. So while it’s certainly a good idea to get off to a good start in the first handful of problems and to avoid streaks of several consecutive misses, the rationale for that is more that avoiding early or prolonged droughts just raises your degree of difficulty. If you get 5 in a row wrong, you need to get several in a row right to even that out, and you can’t afford the kinds of mental errors that tend to be common and natural on a high-stakes exam. If you do manage to get the next several right, however, you can certainly overcome that dry spell.

In summary, it’s only natural to look at your practice tests and try to determine how the score was calculated and how you can use that system to your advantage. In reality, however, there are several unseen factors that affect your score that you just won’t ever see or know, so the best use of that curiosity and energy is learning from your mistakes so that the computer — however it’s programmed — has no choice but to give you the score that you want.

Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

This means that we can soon begin to discuss Barack Obama’s legacy. As with any legacy, it’s important to look at the terms globally, and not necessarily get bogged down by one or two memorable moments. A legacy is a summary of the major points and the minor points of one’s tenure. As such, it’s difficult to sum up a presidency that spanned nearly a decade and filter it down to simply “Obamacare” or “Killing Bin Laden” or “Relations with Cuba”. Not everyone will agree on what the exact highlights were, but we must be able to consider all the elements holistically.

On the GMAT, Sentence Correction is often the exact same way. If only a few words are highlighted, then your task is to make sure those few words make sense and flow properly with the non-underlined portion. If, however, the entire sentence is underlined, you have “carte blanche” (or Cate Blanchett) to make changes to any part of the sentence. The overarching theme is that the whole sentence has to make sense. This means that you can’t get bogged down in one portion of the text, you have to evaluate the entire thing. If some portion of the phrasing is good but another contains an error, then you must eliminate that choice and find and answer that works from start to finish.

Let’s look at a topical Sentence Correction problem and look for how to approach entire sentences:

*Selling two hundred thousand copies in its first month, the publication of The Audacity of Hope in 2006 was an instant hit, helping to establish Barack Obama as a viable candidate for president.*

*A) Selling two hundred thousand copies in its first month, the publication of The Audacity of Hope in 2006 was an instant hit, helping to establish Barack Obama as a viable candidate for president.
*

An excellent strategy in Sentence Correction is to look for decision points, significant differences between one answer choice and another, and then make decisions based on which statements contain concrete errors. However, when the whole sentence is underlined, this becomes much harder to do because there might be five decision points between statements, and each one is phrased a little differently. You can still use decision points, but it might be simpler to look through the choices for obvious errors and then see if the next answer choice repeats that same gaffe (not a giraffe).

Looking at the original sentence (answer choice A), we see a clear modifier error at the beginning. Once the sentence begins with “Selling two hundred thousand copies in its first month,…” the very next word after the comma must be the noun that has sold 200,000 copies. Anything else is a modifier error, whether it be “Barack Obama wrote a book that sold” or “the publication of the book” or any other variation thereof. We don’t even need to read any further to know that it can’t be answer choice A. We’ll also pay special attention to modifier errors because if it happened once it can easily happen again in this sentence.

Answer choice B, unsurprisingly, contains a very similar modifier error. The sentence begins with: “The publication in 2006 of the Audacity of Hope was an instant hit:…”. This means that the publication was a hit, whereas logically the book was the hit. This is an incorrect answer choice again, and so far we haven’t even had to venture beyond the first sentence, so don’t let the length of the answer choices daunt you.

Answer choice C, “*helping to establish Barack Obama as a viable candidate for president was the publication of The Audacity of Hope in 2006, which was an instant hit: it sold two hundred thousand copies in its first month” *contains another fairly glaring error. On the GMAT, the relative pronoun “which” must refer to the word right before the comma. In this case, that would be the year 2006, instead of the actual book. Similarly to the first two choices, this answer also contains a pronoun error because the “it” after the colon would logically refer back to the publication instead of the book as well. One error is enough, and we’ve already got two, so answer choice C is definitely not the correct selection.

Answer choice D, “The *Audacity of Hope was an instant hit: it helped establish Barack Obama as a viable candidate for president, selling two hundred thousand copies in its first month and published in 2006” *sounds pretty good until you get to the very end. The “published in 2006” is a textbook dangling modifier, and would have been fine had it been placed at the beginning of the sentence. Unfortunately, as it is written, this is not a viable answer choice (you are the weakest link).

By process of elimination, it must be answer choice E. Nonetheless, if we read through it, we’ll find that it doesn’t contain any glaring errors: “The *Audacity of Hope, published in 2006, was an instant hit: in two months, it sold two hundred thousand copies and helped establish its author, Barack Obama, as a viable candidate for president.” *The title of the book is mentioned initially, a modifier is correctly placed and everything after the colon describes why it was regarded as a hit. Holistically, there’s nothing wrong with this answer choice, and that’s why E must be the correct answer.

Overall, it’s easy to get caught up in one moment or another, but it’s important to look at things globally. A 30-word passage entirely underlined can cause anxiety in many students because there are suddenly many things to consider at the same time. There’s no reason to panic. Just review each statement holistically, looking for any error that doesn’t make sense. If everything looks good, even if it wasn’t always ideal, then the answer choice is fine. It’s important to think of your legacy, and on the GMAT, that means getting a score that lets you achieve your goals.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*Ron Awad is a GMAT instructor for Veritas Prep based in Montreal, bringing you weekly advice for success on your exam. After graduating from McGill and receiving his MBA from Concordia, Ron started teaching GMAT prep and his Veritas Prep students have given him rave reviews ever since.*

**No single question matters unless you let it.**

Reflect on that for a second, because it’s super important, weird, true, and again…important. The GMAT exam is not testing your ability to get as many questions right as you can. You can get the exact same percentage of questions right on two different exams and end up getting very different scores as a result of the complicated scoring algorithm. Mistakes that will crush your score are a large string of consecutive incorrect answers, unanswered questions remaining at the end of the section (these hurt your score even more than answering them incorrectly would), and a very low hit rate for the last 5 or 10 questions. These are all problems that are likely to arise if you spend way too much time on one/several questions.

Each individual question is actually pretty insignificant. The GMAT has 37 quantitative questions to gauge your ability level (currently ignoring the issue of experimental questions), so whether you get a certain question right or wrong doesn’t matter much. Let’s look at a hypothetical example and pick on question #17 for a second (just because it looked at me wrong!). If you start question 17, realize that it is not going your way, and ultimately make an educated guess after about 2 minutes and get it wrong…that doesn’t hurt you a lot. You missed the question, but you didn’t let it burn a bunch of your time and you live to fight another day (or in this case question).

Now let’s look at question 17 again, but from the perspective of being stubborn. If you start the question and are struggling with it but refuse to quit, thinking something like “this is geometry, I am so good at geometry, I have to get this right!”, then it will become very significant. In a bad way. In this example you spend 6 minutes on the question and you get it right. Congratulations! Except…you are now statistically not even going to get to attempt to answer two other questions because of the time that you just committed to it (with an average of 2 minutes per question on the quant section, you just allocated 3 questions’ worth of time to one question).

So your victory over infamous question 17 just got you 2 questions wrong! That’s a net negative. Loop in the concept of experimental questions, the fact that approximately one-fourth of quant questions don’t count, and therefore it is entirely possible that #17 isn’t even a real question, and the situation is pretty depressing.

Pacing is critical, and your pacing on quant questions should very rarely ever go above 3 minutes. Spending an excess amount of time on a question but getting it right is not a success; it is a bad strategic move. I challenge you to look at any practice tests that you have taken and decide whether you let this happen. Were there a few questions that you spent way over 2 minutes on and got right, but then later in the test a bunch of questions that you had to rush on and ended up missing, even though they may not have been that difficult? If that’s the case, then your timing is doing some serious damage. Work to correct this fatal error ASAP!

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*Brandon Pierpont is a GMAT instructor for Veritas Prep. He studied finance at Notre Dame and went on to work in private equity and investment banking. When he’s not teaching the GMAT, he enjoys long-distance running, wakeboarding, and attending comedy shows.*

For example, review this post on averages.

Here we saw that:

**Average Speed = 2ab/(a + b)**

Applicable when one travels at speed a for half the distance and speed b for other half of the distance. In this case, average speed is the harmonic mean of the two speeds.

So now, say if we have a question which looks like this:

**Question**: In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

Statement 1: In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.

Statement 2: In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.

**Solution**: We know that the question involves average speed. The case involves travelling at a particular average speed for one half of the journey and at another average speed for the other half of the journey.

So average speed of the entire trip will be given by 2ab/(a+b)

But the first problem is that we are given a range of speeds. How do we handle ‘at least 10’ and ‘no more than 50’ in equation form? We have learnt that we should focus on the extremities so let’s analyse the problem by taking the numbers are the extremities:10 and 50

Statement 1: In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.

What if Chris drives at an average speed of 10 mph in the morning and averages 100 mph for the entire journey? What will be his average speed in the evening? Perhaps around 200, right? Let’s see.

100 = 2*10*b/(10 + b)

1000 + 100b = 20b

1000 = -80b

b = – 1000/80

How can speed be negative?

Let’s hold on here and try the same calculation for statement 2 too.

Statement 2: In the evening, Chris drove at an average speed which no more than 50 miles per hour while travelling from Oakville to Toronto.

If Chris drives at an average speed of 50 mph in the evening, and averages 100 mph, let’s find his average speed in the morning.

100 = 2a*50/(a + 50)

100a + 5000 = 100a

5000 = 0

This doesn’t make any sense either!

What is going wrong? Look at it conceptually:

Say, Toronto is 100 miles away from Oakville. If Chris wants his average speed to be 100 mph over the entire trip, he should cover 100+100 = 200 miles in 2 hrs.

What happens when he travels at 10 mph in the morning? He takes 100/10 = 10 hrs to reach Oakville in the morning. He has already taken more time than what he had allotted for the entire round trip. Now, no matter what his speed in the evening, his average speed cannot be 100mph. Even if he reaches Oakville to Toronto in the blink of an eye, he would have taken 10 hours and then some time to cover the total 200 miles distance. So his average speed cannot be equal to or more than 200/10 = 20 mph.

Similarly, if he travels at 50 mph in the evening, he takes 2 full hours to travel 100 miles (one side distance). In the morning, he would have taken some time to travel 100 miles from Toronto to Oakville. Even if that time is just a few seconds, his average speed cannot be 100 mph under any circumstances.

But statement 1 says that his speed in morning was at least 10 mph which means that he could have traveled at 10 mph in the morning or at 100 mph. In one case, his average speed for the round trip cannot be 100 mph and in the other case, it can very well be. Hence statement 1 alone is not sufficient.

On the other hand, statement 2 says that his speed in the evening was 50 mph or less. This means he would have taken AT LEAST 2 hours in the morning. So his average speed for the round trip cannot be 100 mph under any circumstances. So statement 2 alone is sufficient to answer this question with ‘No’.

Answer (B)

**Takeaway: If your average speed is s for a certain trip, your average speed for half the distance must be more than s/2.**

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

*On challenging Strengthen and Assumption questions, the correct answer often tells you that a potential flaw with the argument is not true. *

Everything that’s not true in that answer choice, then, makes the conclusion substantially more valid.

Consider this argument, for example:

Kanye received the most votes for the “Best Hip Hop Artist” award at the upcoming MTV Video Music Awards, so Kanye will be awarded the trophy for Best Hip Hop Artist.

If this were the prompt for a question that asked “Which of the following is an assumption required by the argument above?” a correct answer might read:

A) The Video Music Award for “Best Hip Hop Artist” is not decided by a method other than voting.

And the function of that answer choice is to tell you what’s not true (“everything I’m not”), removing a flaw that allows the conclusion to be much more logically sound (“…made me everything I am.”) These answer choices can be challenging in context, largely because:

1) Answer choices that remove a flaw can be difficult to anticipate, because those flaws are usually subtle.

2) Answer choices that remove a flaw tend to include a good amount of negation, making them a bit more convoluted.

In order to counteract these difficulties, it can be helpful to use “Everything I’m not made me everything I am” to your advantage. If what’s NOT true is essential to the conclusion’s truth, then if you consider the opposite – what if it WERE true – you can turn that question into a Weaken question. For example, if you took the opposite of the choice above, it would read:

The VMA for “Best Hip Hop Artist” is decided by a method other than voting.

If that were true, the conclusion is then wholly unsupported. So what if Kanye got the most votes, if votes aren’t how the award is determined? At that point the argument has no leg to stand on, so since the opposite of the answer directly weakens the argument, then you know that the answer itself strengthens it. And since we’re typically all much more effective as critics than we are as defenders, taking the opposite helps you to do what you’re best at. So consider the full-length problem:

**Editor of an automobile magazine:** The materials used to make older model cars (those built before 1980) are clearly superior to those used to make late model cars (those built since 1980). For instance, all the 1960’s and 1970’s cars that I routinely inspect are in surprisingly good condition: they run well, all components work perfectly, and they have very little rust, even though many are over 50 years old. However, almost all of the late model cars I inspect that are over 10 years old run poorly, have lots of rust, and are barely fit to be on the road.

Which of the following is an assumption required by the argument above?

A) The quality of materials used in older model cars is not superior to those used to make other types of vehicles produced in the same time period.

B) Cars built before 1980 are not used for shorter trips than cars built since then.

C) Manufacturing techniques used in modern automobile plants are not superior to those used in plants before 1980.

D) Well-maintained and seldom-used older model vehicles are not the only ones still on the road.

E) Owners of older model vehicles take particularly good care of those vehicles.

First notice that several of the answer choices (A, B, C, and D) include “is not” or “are not” and that the question stem asks for an assumption. These are clues that you’re dealing with a “removes the flaw” kind of problem, in which what is not true (in the answer choices) is essential to making the conclusion of the argument true. Because of that, it’s a good idea to take the opposites of those answer choices so that instead of removing the flaw in a Strengthen/Assumption question, you’re introducing the flaw and making it a Weaken. When you do that, you should see that choice D becomes:

D) Well-maintained and seldom-used older model vehicles ARE the only ones still on the road.

If that’s the case, the conclusion – “the materials used to make older cars are clearly superior to those used in newer ones” – is proven to be flawed. All the junkers are now off the road, so the evidence no longer holds up; you’re only seeing well-working old cars because they’re the most cared-for, not because they were better made in the first place.

And in a larger context, look at what D does ‘reading forward': if it’s not only well-maintained and seldom-driven older cars on the road, then you have a better comparison point. So what’s not true here makes the argument everything it is. But dealing in “what’s not true” can be a challenge, so remember that you can take the opposite of each answer choice and make this “Everything I’m Not” assumption question into a much-clearer “Everything I Am” Weaken question.

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

As an example, consider a simple question that asks you how many even numbers there are between 1 and 100. Of course, you could write out all 100 terms and identify which ones are even, say by circling them, and then sum up all the circled terms. This strategy would work, but it is completely inefficient and anyone who’s successfully passed the fourth grade would be able to see that you can get the answer faster than this. If every second number is even, then you just have to take the number of terms and divide by 2. The only difficulty you could face would be the endpoints (say 0 to 100 instead), but you can adjust for these easily. The next question might be count from 1 to 1,000, and you definitely don’t want to be doing that manually.

Other questions might not be as straight forward, but can be solved using similar mathematical properties. It’s important to note that you don’t have a calculator on the GMAT, but you will have one handy for the rest of your life (even in a no-WiFi zone!). This means that the goal of the test is not to waste your time executing calculations you would execute on your calculator in real life, but rather to evaluate how you think and whether you can find a logical shortcut that will yield the correct answer quickly.

Let’s look at an example that can waste a lot of time if you’re not careful:

*Brian plays a game in which he rolls two die. For each die, an even number means he wins that amount of money and an odd number means he loses that amount of money. What is the probability that he loses money if he plays the game once?*

*A) 11/12
*

First, it’s important to interpret the question properly. Brian will roll two die, independently of one another. For each even number rolled, he will win that amount of money, so any given die is 50/50. If both end up even, he’s definitely winning some money, but if one ends up even and the other odd, he may win or lose money depending on the values. The probability should thus be close to being 50/50, but a 5 with a 4 will result in a net loss of 1$, whereas a 5 with a 6 will result in a net gain of 1$. Clearly, we need to consider the actual values of each die in some of our calculations.

Let’s start with the brute force approach (similar to writing out 1-100 above). There are 6 sides to a die, and we’re rolling 2 dice, so there are 6^2 or 36 possibilities. We could write them all out, sum up the dollar amounts won or lost, and circle each one that loses money. However, it is essentially impossible to do this in less than 2 minutes (or even 3-4 minutes), so we shouldn’t use this as our base approach. We may have to write out a few possibilities, but ideally not all 36.

If both numbers are even, say 2 and 2, then Brian will definitely win some money. The only variable is how much money, but that is irrelevant in this problem. Similarly, if he rolls two odd numbers, say 3 and 3, then he’s definitely losing money. We don’t need to calculate each value; we simply need to know they will result in net gains or net losses. For two even numbers, in which we definitely win money, this will happen if the first die is a 2, a 4 or a 6, and the second die is a 2, a 4 or a 6. That would leave us with 9 possibilities out of the 36 total outcomes. You can also calculate this by doing the probability of even and even, which is 3/6 * 3/6 or 9/36. Similarly, odd and odd will also yield 9/36 as the possibilities are 1, 3, and 5 with 1, 3, and 5. Beyond this, we don’t need to consider even/even or odd/odd outcomes at all.

The interesting part is when we come to odds and evens together. One die will make Brian win money and the other will make him lose money. The issue is in the amplitude. Since we’ve eliminated 18 possibilities that are all entirely odd or even, we only need to consider the 18 remaining mixed possibilities. There is a logical way to solve this issue, but let’s cover the brute force approach since it’s reasonable at this point. The 18 possibilities are:

Odd then even: Even then odd:

1, 2 3, 2 5, 2 2, 1 4, 1 6, 1

1, 4 3, 4 5, 4 2, 3 4, 3 6, 3

1, 6 3, 6 5,6 2, 5 4, 5 6, 5

Looking at these numbers, it becomes apparent that each combination is there twice ((2,1) or (1,2)). The order may matter when considering 36 possibilities, but it doesn’t matter when considering the sums of the die rolls. (2,1) and (1,2) both yield the same result (net gain of 1), so the order doesn’t change anything to the result. We can simplify our 18 cases into 9 outcomes and recall that each one weighs 1/18 of the total:

(1,2) or (2,1): Net gain of 1$

(1,4) or (4,1): Net gain of 3$

(1,6) or (6,1): Net gain of 5$

Indeed, no matter what even number we roll with a 1, we definitely make money. This is because 1 is the smallest possible number. Next up:

(3,2) or (2,3): Net loss of 1$

(3,4) or (4,3): Net gain of 1$

(3,6) or (6,3): Net gain of 3$

For 3, one of the outcomes is a loss whereas the other two are gains. Since 3 is bigger than 2, it will lead to a loss. Finally:

(5,2) or (2,5): Net loss of 3$

(5,4) or (4,5): Net loss of 1$

(5,6) or (6,5): Net gain of 1$

For 5, we tend to lose money, because 2/3 of the possibilities are smaller than 5. Only a 6 paired with the 5 would result in a net gain. Indeed, all numbers paired with 6 will result in a net gain, which is the same principle as always losing with a 1.

Summing up our 9 possibilities, 3 led to losses while 6 led to gains. The probability is thus not evenly distributed as we might have guessed up front. Indeed, the fact that any 6 rolled with an odd number always leads to a gain whereas any 1 rolled with an even number always leads to a loss helps explain this discrepancy.

To find the total probability of losing money, we need to find the probability of reaching one of these three odd-even outcomes. The chance of the dice being odd and even (in any order) is ½, and within that the chances of losing money are 3/9: (3, 2), (5, 2), and (5, 4). Thus we have 3/9 * ½ = 3/18 or 1/6 chance of losing money if it’s odd/even. Similarly, if it ends up odd/odd, then we always lose money, and that’s 3/9 * 3/9 = 9/36 or ¼. We have to add the two possibilities since any of them is possible, and we get ¼ + 1/6, if we put them on 12 we get 3/12 + 2/12 which equals 5/12. This is answer choice D.

It’s convenient to shortcut this problem somewhat by identifying that it cannot end up at 50/50 (answer choice C) because of the added weight of even numbers. Since 6 will win over anything, you start getting the feeling that your probability of losing will be lower than ½. From there, your choices are D or E, 15/36 or 12/36. Short of taking a guess, you could start writing out a few possibilities without having to consider all 36 outcomes, and determine that all odd/odd combinations will work. After that, you look at the few possibilities that could work ((5,4), (4,5), etc) and determine that there are more than 12 total possibilities, locking you in to answer choice D.

Many students struggle with problems such as these because they appear to be simple if you just write out all the possibilities. Especially when your brain is already feeling fatigued, you may be tempted to try and save mental energy by using brute force to solve problems. Beware, the exam wants you to do this (It’s a trap!) and waste precious time. If you need to write out some possibilities, that’s perfectly fine, but try and avoid writing them all out by using logic and deduction. On test day, if you use logic to save time on possible outcomes, you won’t lose.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

An **expression** contains numbers, variables and operators.

For example

x + 4

2x – 4x^2

5x^2 + 4x -18

and so on…

These are all expressions. We CANNOT equate these expressions to 0 by default. We cannot solve for x in these cases. As the value of x changes, the value of the expression changes.

For example, given x + 4, if x is 1, value of the expression is 5. If x is 2, value of the expression is 6. If value of the expression is given to be 10, x is 6 and so on.

We cannot say, “Solve x + 4.”

If we set an algebraic expression equal to something, with an “=“ sign, we have an **equation**.

So here are some ways of converting the above expressions into equations:

I. x + 4 = -3

II. 2x – 4x^2 = 0

III. 5x^2 + 4x -18 = 3x

Now the equation can be solved. Note that the right hand side of the equation needn’t always be 0. It might be something other than 0 and you might need to make it 0 by bringing whatever is on the right hand side to the left hand side or by segregating the variable if possible:

I. x + 4 = -3

x + 7 = 0

x = -7

II. 2x – 4x^2 = 0

2x(1 – 2x) = 0

x = 0 or 1/2

III. 5x^2 + 4x -18 – 3x = 0

5x^2 + x – 18 = 0

5x^2 + 10x – 9x – 18 = 0

5x(x + 2) -9(x + 2) = 0

(x + 2)(5x – 9) = 0

x = -2, 9/5

In each of these cases, we get only a few values for x because we were given equations.

Think about what you mean by “solving an equation”. Let’s take a particular type of equation – a quadratic.

This is how you usually depict a quadratic:

f(x) = ax^2 + bx + c

or

y = ax^2 + bx + c

This is a parabola – upward facing if a is positive and downward facing if a is negative.

When we solve ax^2 + bx + c = 0 for x, it means, when y = 0, what is the value of x? So you are looking for x intercepts.

When we solve ax^2 + bx + c = d for x, it means, when y = d, what is the value of x? Depending on the values of a, b, c and d, you may or may not get values for x.

Let’s take an example:

x^2 – 2x – 3 = 0

(x + 1)(x – 3) = 0

x = -1 or 3

This is what it looks like:

When y is 0, x can take two values: -1 and 3.

So what do we do when we have x^2 – 2x -3 = -3?

We solve it in the same way:

x^2 – 2x -3 + 3 = 0

x(x – 2) = 0

x = 0 or 2

So when y is -3, x is 0 or 2. It has 2 values for y = -3 as is apparent from the graph too.

Similarly, you can solve for it when y = 5 and get two values for x.

What happens when you put y = -5? x will have no value for y = -5 so the equation x^2 – 2x – 3 = – 5 has no real solutions (so ‘no solutions’ as far as we are concerned).

We hope you understand the difference between an expression and an equation now and also that you cannot equate any given expression to 0 and solve it.

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

You’re in luck. Function problems on the GMAT are essentially Shake and Bake recipes. Consider the example:

f(x) = x^2 – 80

If that gets your heart rate and stress level up, you’re not alone. Function notation just looks challenging. But it’s essentially Shake and Bake if you dissect what a function looks like.

The f(x) portion tells you about your input. f(x) = ________ means that, for the rest of that problem, whatever you see in parentheses is your “input” (just like the chicken in your Shake and Bake).

What comes after the equals sign is the recipe. It tells you what to do to your input to get the result. Here f(x) = x^2 – 80 is telling you that whatever your input, you square it and then subtract 80 and that’s your output. …And that’s it.

So if they ask you for:

What is f(9)? (your input is 9), then f(9) = 9^2 – 80, so you square 9 to get 81, then you subtract 80 and you have your answer: 1.

what is f(-4)? (your input is -4), then f(4) = 4^2 – 80, which is 16 – 80 = -64.

What is f(y^2)? (your input is y^2), then f(y^2) = (y^2)^2 – 80, which is y^4 – 80.

What is f(Rick Astley), then your input is Rick Astley and f(Rick Astley) = (Rick Astley)^2 – 80.

It really doesn’t matter what your input is. Whatever the test puts in the parentheses, you just use that as your input and do whatever the recipe says to do with it. So for example:

f(x) = x^2 – x. For which of the following values of a is f(a) > f(8)?

I. a = -8

II. a = -9

III a = 9

A. I only

B. II only

C. III only

D. I and II only

E. I, II, and III

While this may look fairly abstract, just consider the inputs they’ve given you. For f(8), just put 8 wherever that x goes in the “recipe” f(x) = x^2 – x:

f(8) = 8^2 – 8 = 64 – 8 = 56

And then do the same for the three other possible values:

I. f(-8) means put -8 wherever you see the x: (-8)^2 – (-8) = 64 + 8 = 72, so f(-8) > f(8).

II. f(-9) means put -9 wherever you see the x: (-9)^2 – (-9) = 81 + 9 = 90, so f(-9) > f(8)

III. f(9) means put a 9 wherever you see the x: 9^2 – 9 = 81 – 9 = 72, so f(9) > f(8), and the answer is E.

Ultimately with functions, the notation (like the Shake and Bake ingredients) is messy, but with practice the recipes become easy to follow. What goes in the parentheses is your input, and what comes after the equals sign is your recipe. Follow the steps, and you’ll end up with a delicious GMAT quant score.

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*By Brian Galvin*

This statement “No outside knowledge is required on the GMAT” is true in spirit, but a fundamental understanding of certain basic concepts is sometimes required. The exam won’t expect you to know the distance between New York and Los Angeles (19,600 furlongs or so), but you should know that both cities exist. The exam will always give you conversions when it comes to distances (miles to feet, for example), temperatures (Fahrenheit to Celsius) or anything else that can be measured in different systems, but the basic concepts that any human should know are fair game on the exam.

If you think about the underlying logic, it makes sense that a business person needs to be able to reason things out, but the reasoning must also be based on tenets that people can agree on. You won’t need to know something like all the variables involved in a carbon tax or on the electoral process of Angola, but you should know that Saturday comes after Friday (and Sunday comes afterwards).

Let’s look at a relatively simple question that highlights the need to think critically about outside knowledge that may be important:

*Tom was born on October 28 ^{th}. On what day of the week was he born?*

*1) In the year of Tom’s birth, January 20 ^{th} was a Sunday.
*

*A) Statement 1 alone is sufficient but statement 2 alone is not sufficient to answer the question asked.
*

Since this is a data sufficiency question, it’s important to note that we must only determine whether or not the information is sufficient, we do not actually need to figure out which day of the week it is. Once we know that the information is knowable, we don’t need to proceed any further.

In this case, we are trying to determine Tom’s birthday with 100% certainty. There are only 7 days in a week, but we need a reference point somewhere to determine which year it is or what day of the year another day of that same year falls (ideally October 27^{th}!).

Statement 1 gives us a date for that same year. This should be enough to solve the problem, except for one small detail: the day given is in January. Since the Earth’s revolution around the sun is not an exact multiple of its rotation around itself, some years contain one extra day on February 29^{th}, and are identified as leap years. The day of January 20^{th} gives us a fixed point in that year, but since it is before February 28^{th}, we don’t know if March 1^{st} will be 40 days or 41 days away from January 20^{th}. Since this is the case, October 28^{th} could be one of two different days of the week, depending on whether we are in a leap year, and so this statement is insufficient.

Statement 2, on the other hand, gives us a date in July. Since July is after the possible leap day, this means that the statement must be sufficient. Specifically, if July 17^{th} was a Wednesday, then October 28^{th} would have to be a Monday. You could do the calculations if you wanted to: there are 14 more days in July, 31 in August, 30 in September and 28 in October, for a total of 103 days, or 14 weeks and 5 days. The 14 weeks don’t change anything to the day of the week, so we must advance 5 days from Wednesday, taking us to the following Monday. Statement 2 must be sufficient, even if we don’t need to execute the calculations to be sure.

Interestingly, if you consider January 20^{th} to be a Sunday, then you could get a year like 2013 in which the 28^{th} of October is a Monday. 2013 is not a leap year, so July 17^{th} is also a Wednesday and either statement would lead to the same answer. However, if you consider January 20^{th} to be a Sunday, you could also get a year like 2008, which was a leap year, and then October 28^{th} was a Tuesday. July 17^{th} would no longer be a Wednesday, which is why the second statement is consistently correct whereas the first statement could lead to one of two possibilities. Some students erroneously select answer choice D, that both statements together solve this issue. While the combination of statements does guarantee one specific answer, you’re overpaying for information because statement 2 does it alone. The answer you should pick is B.

On the GMAT, it’s important that outside knowledge not be tested explicitly because it’s a test of how you think, not of what you know. However, some basic concepts may come up that require you to use logic based on things you know to be true. You will never be undone on a GMAT question because “I didn’t know that,” but rather because “Oh, I forgot to take that into account.” The GMAT is primarily a test of thinking, and it’s important to keep in mind little pieces of knowledge that could have big implications on a question. As they say, knowing is half the battle (G.I. Joe!).

Today we discuss the kind of questions which beg you to stay away from number plugging (but somehow, people still insist on using it because they see variables).

Not every question with variables is suitable for number plugging. If there are too many variables, it can be confusing and error prone. Then there are some other cases where number plugging is not suitable. Today we discuss an official question where you face two of these problems.

**Question**: If m, p , s and v are positive, and m/p < s/v, which of the following must be between m/p and s/v?

I. (m+s)/(p+v)

II. ms/pv

III. s/v – m/p

(A) None

(B) I only

(C) II only

(D) III only

(E) I and II both

**Solution**: The moment people see m, p, s and v variables, they jump to m = 1, p = 2 etc.

But two things should put you off number plugging here:

– There are four variables – just too many to plug in and manage.

– The question is a “must be true” question. Plugging in numbers is not the best strategy for ‘must be true’ questions. If you know that say, statement 1 holds for some particular values of m, p, s and v (say, 1, 2, 3 and 4), that’s fine but how do you know that it will be true for every set of valid values of m, p, s and v? You cannot try every set because the variables can take an infinite variety of values. If you find a set of values for the variables such that statement 1 does not hold, then you know for sure that it may not be true. In this case, number plugging does have some use but it may be a while before you can arrive at values which do not satisfy the conditions. In such questions, it is far better to take the conceptual approach.

We can solve this question using some number line and averaging concepts.

We are given that m/p < s/v

This means, this is how they look on the number line:

…………. 0 ……………….. m/p …………………… s/v ……………..

(since m, p, s and v are all positive (not necessarily integers though) so m/p and s/v are to the right of 0)

Let’s look at statement II and III first since they look relatively easy.

II. ms/pv

Think of the case when m/p and s/v are both less than 1. When you multiply them, they will become even smaller. Say .2*.3 = .06. So the product ms/pv may not lie between m/p and s/v.

Tip: When working with number properties, you should imagine the number line split into four parts:

- less than -1
- between -1 and 0
- between 0 and 1
- greater than 1

Numbers lying in these different parts behave differently. You should have a good idea about how they behave.

III. s/v – m/p

Think of a case such as this:

…………. 0 ………………………… m/p … s/v ……….

s/v – m/p will be much smaller than both m/p and s/v and will lie somewhere “here”:

…………. 0 ……… here ………………… m/p … s/v ……….

So the difference between them needn’t actually lie between them on the number line.

Hence s/v – m/p may not be between m/p and s/v.

I. (m+s)/(p+v)

This is a little tricky. Think of the four numbers as N1, N2, D1, D2 for ease and given fractions as N1/D1 and N2/D2.

(m+s)/(p+v)

= [(m+s)/2]/[(p+v)/2]

= (Average of N1 and N2)/(Average of D1 and D2)

Now average of the numerators will lie between N1 and N2 and average of the denominators will lie between D1 and D2. So (Average of N1 and N2)/(Average of D1 and D2) will lie between N1/D1 and N2/D2. Try to think this through.

We will try to explain this but you must take some examples to ensure that you understand it fully. When is one fraction smaller than another fraction?

When N1/D1 < N2/D2, one of these five cases will hold:

- N1 < N2 and D1 = D2 . For example: 2/9 and 4/9

Average of numerators/Average of denominators = 3/9 (between N1/D1 and N2/D2)

- N1 < N2 and D1 > D2. For example: 2/11 and 4/9

Average of numerators/Average of denominators = 3/10 (between N1/D1 and N2/D2)

- N1 << N2 and D1 < D2. For example: 2/9 and 20/19 i.e. N1 is much smaller than N2 as compared with D1 to D2.

Average of numerators/Average of denominators = 11/14 (between N1/D1 and N2/D2)

- N1 = N2 but D1 > D2. For example: 2/9 and 2/7

Average of numerators/Average of denominators = 2/8 (between N1/D1 and N2/D2)

- N1 > N2 but D1 >> D2. For example: 4/9 and 2/1

Average of numerators/Average of denominators = 3/5 (between N1/D1 and N2/D2)

In each of these cases, (average of N1 and N2)/(average of D1 and D2) will be greater than N1/D1 but smaller than N2/D2. Take some more numbers to understand why this makes sense. Note that you are not expected to conduct this analysis during the test. The following should be your takeaway from this question:

Takeaway: (Average of N1 and N2)/(Average of D1 and D2) will lie somewhere in between N1/D1 and N2/D2 (provided N1. N2, D1 and D2 are positive)

(m+s)/(p+v) must lie between m/p and s/v.

Answer (B)

Are you studying for the GMAT? We have free online GMAT seminars running all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*