The post Quarter Wit, Quarter Wisdom: Ignore the Diagram in That GMAT Geometry Question! appeared first on Veritas Prep Blog.

]]>But sometimes, the GMAT Testmakers give such diagrams that we wish we were not given the diagram at all. In fact, the addition of a diagram – something that often simplifies our questions – can take the difficulty of the question to a whole new level. By now you are probably thinking that I am surely exaggerating, so I will proceed with an example.

Try to figure this out: when the figure given below is cut along the solid lines, folded along the dashed lines, and then taped along the solid lines, the result is a model of a geometric solid.

Now, can you use your imagination and figure out what kind of a geometric solid you will get in this case? Don’t go ahead just yet – first, give it a shot for a few minutes:

To be honest, I have given it a try and it is certainly not easy. I will know for sure only when I actually carry out the aforementioned steps – cut the paper along the solid lines, fold along the dashed lines and then tape up along the solid lines. Without carrying out the steps I am not sure exactly what kind of a figure I will get.

So the test maker comes to our rescue here. Here is the complete question:

*When the figure above is cut along the solid lines, folded along the dashed lines, and taped along the solid lines, the result is a model of a geometric solid. This geometric solid consists of two pyramids each with a square base that they share. What is the sum of number of edges and number of faces of this geometric solid?*

*(A) 10*

*(B) 18*

*(C) 20*

*(D) 24*

*(E) 25*

The Testmaker specifies what kind of a figure we get – two pyramids, each with a square base that they share. Figuring this out in one minute without an actual paper and scissor at hand would need extraordinary skill. Many test-takers spend precious minutes trying to make sense of the given diagram, but in problems like this, it should be completely ignored because we already know what it will look like – two pyramids with a common square base.

This, we understand! We know what a pyramid looks like – triangular faces converge to a single point at the top with a polygon (often a square) base. We need two pyramids joined together at the base.

This is what the solid will look like:

Just the 4 triangular faces of each of the two pyramids (8 triangles total) will be visible. Since they will share the square base, the base will not be visible. Hence, the figure will have 8 faces.

Now let’s see how many edges there will be: to make the top pyramid, four triangular faces join to give four edges. To make the bottom pyramid, another four triangular faces join to give four more edges. The two pyramids join on the square base to give yet another four edges.

So all in all, we have 4 + 4 + 4 = 12 edges

When we sum up the faces and edges, we get 8 + 12 = 20

The question is much more manageable now. All we had to do was ignore the diagram given to us!

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Ignore the Diagram in That GMAT Geometry Question! appeared first on Veritas Prep Blog.

]]>The post Understanding the Changes to the U.S. Visa Process appeared first on Veritas Prep Blog.

]]>Of most critical importance to the world of MBA admissions is how this affects the ability for international students to secure employment post-graduation. Many international MBA applicants rely on the H-1B visa to offer them a chance to purse their dreams of working in the U.S. Without this visa, the viability of a U.S. MBA degree lessens for these international applicants.

Not surprisingly with every regime change in Washington, policy and legislation can be impacted. The new administration appears to be focusing on prioritizing jobs for Americans and this obviously puts the H-1B visa program in direct conflict. Although most of the minor changes and announcements are more cosmetic in nature, coming legislation is expected that will make it even more difficult to secure these work visas.

Major MBA employers like Microsoft, Facebook, IBM who also happen to be common recipients of the H-1B visas have prepared for the impending changes. Although, those with computer science and engineering background tend to be the largest recipients of these visas, MBAs also rely on them as well in great numbers. The above employers, and those in similar industries to tech, have already started to move hiring away from low level, cheaper visa recipients to more expensive, higher educated talent.

Even in the face of this changing focus by employers, the H-1B visa remains more difficult than ever to secure. With impending legislation expected to surface soon, the process will only become more difficult.

MBA applicants and students alike should evaluate this news and begin to take their future career plans into consideration. At this stage, this news should not ring any major alarms, as not much has materially changed as of yet, but international students and applicants who have plans to work in the U.S. should factor in the impact legislation could have on future career goals.

*Applying to business school? Call us at 1-800-925-7737 and speak with an MBA admissions expert today, or take our free MBA Admissions Profile Evaluation for personalized advice for your unique application situation! As always, be sure to find us on Facebook, YouTube, Google+ and Twitter.*

*Dozie A. is a Veritas Prep Head Consultant for the Kellogg School of Management at Northwestern University. His specialties include consulting, marketing, and low GPA/GMAT applicants. You can read more articles by him here.*

The post Understanding the Changes to the U.S. Visa Process appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: The 3-Step Method to Solving Complex GMAT Algebra Problems appeared first on Veritas Prep Blog.

]]>Today, let’s see how to handle such questions step-by-step by looking at an example problem:

*N and M are each 3-digit integers. Each of the numbers 1, 2, 3, 6, 7, and 8 is a digit of either N or M. What is the smallest possible positive difference between N and M?*

*(A) 29*

* (B) 49*

* (C) 58*

* (D) 113*

* (E) 131*

This is not a simple algebra question, where we are asked to make equations and solve them.

We are given 6 digits: 1, 2, 3, 6, 7, 8. Each digit needs to be used to form two 3-digit numbers. This means that we will use each of the digits only once and in only one of the numbers.

We also need to minimize the difference between the two numbers so they are as close as possible to each other. Since the numbers cannot share any digits, they obviously cannot be equal, and hence, the smaller number needs to be as large as possible and the greater number needs to be as small as possible for the numbers to be close to each other.

Think of the numbers of a number line. You need to reduce the difference between them. Then, under the given constraints, push the smaller number to the right on the number line and the greater number to the left to bring them as close as possible to each other.

**STEP 1:**

The first digit (hundreds digit) of both numbers should be consecutive integers – i.e. the difference between 1** and 2** can be made much less than the difference between 1** and 3** (the difference between the latter will certainly be more than 100).

We get lots of options for hundreds digits: (1** and 2**) or (2** and 3**) or (6** and 7**) or (7** and 8**). All of these options could satisfy our purpose.

**STEP 2:**

Now let’s think about what the next digit (the tens digit) should be. To minimize the difference between the numbers, the tens digit of the greater number should be as small as possible (1, if possible) and the tens digit of the smaller number should be as large as possible (8, if possible). So let’s not use 1 or 8 in the hundreds places and reserve them for the tens places instead, since we have lots of other options (which are equivalent) for the hundreds places. Now what are the options?

Let’s try to make a pair of numbers in the form of 2** and 3**. We need to make the 2** number as large as possible and make the 3** number as small as possible. As discussed above, the tens digit of the smaller number should be 8 and the tens digit of the greater number should be 1. We now have 28* and 31*.

**STEP 3:**

Now let’s use the same logic for the units digit – make the units digit of the smaller number as large as possible and the units digit of the greater number as small as possible. We have only two digits left over – 6 and 7.

The two numbers could be 287 and 316 – the difference between them is 29.

Let’s try the same logic on another pair of hundreds digits, and make the pair of numbers in the form of 6** and 7**. We need the 6** number to be as large as possible and the 7** number to be as small as possible. Using the same logic as above, we’ll get 683 and 712. The difference between these two is also 29.

The smallest of the given answer choices is 29, so we need to think no more. The answer must be A.

Note that even if you try to express the numbers algebraically as:

N = 100a + 10b + c

M = 100d + 10e + f

a lot of thought will still be needed to find the answer, and there is no real process that can be followed.

Assuming N is the greater number, we need to minimize N – M.

N – M = 100 (a – d) + 10( b – e) + (c – f)

Since a and d cannot be the same, the minimum value a – d can take is 1. (a – d) also cannot be negative because we have assumed that N is greater than M. With this in mind, a and d must be consecutive (2 and 1, or 3 and 2, or 7 and 6, etc). This is another way of completing STEP 1 above.

Next, we need to minimize the value of (b – e). From the available digits, 1 and 8 are the farthest from each other and can give us a difference of -7. So b = 1 and e = 8. This leaves the consecutive pairs of 2, 3 and 6, 7 for hundreds digits. This takes care of our STEP 2 above.

(c – f) should also have a minimum value. We have only one pair of digits left over and they are consecutive, so the minimum value of (c – f) is -1. If the hundreds digits are 3 and 2, then c = 6 and f = 7. This is our STEP 3.

So, the pair of numbers could be 316 and 287 – the difference between them is 29. The pair of numbers could also be 712 and 683 – the difference between them is also 29.

In either case, note that you do not have a process-oriented approach to solving this problem. A bit of higher-order thinking is needed to find the correct answer.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: The 3-Step Method to Solving Complex GMAT Algebra Problems appeared first on Veritas Prep Blog.

]]>The post Which is Worse to Encounter on a GMAT Question: Median or Mean? appeared first on Veritas Prep Blog.

]]>Median is the value at a point – to be precise, the point which divides the increasing data set into two equal halves. You don’t care what is on the left and what is on the right of this point, so an outlier will do nothing to the median. The mean, however depends on every value in the set. If you increase one element of data, the mean of the set changes – outliers can drastically change the value of the mean. Hence, every element has to be kept in mind! With the median, there is a lot less to worry about.

Let’s illustrate this with an example data sufficiency question:

**Question on Median:**

*At a bakery, cakes are sold every day for a certain number of days. If 6 or more cakes were sold for 20% of the total number of days, is the median number of cakes sold less than 4?*

*Statement 1: On 75% of the days that less than 6 cakes were sold, the number of cakes sold each day was less than 4.*

*Statement 2: On 50% of the days that 4 or more cakes were sold, the number of cakes sold each day was 6 or more.*

The following is the number of cakes sold on any of the days mentioned in the question:

Say there were 100 days (since all figures are in terms of percentages, we can assume a number to simplify our understanding).

The question stem tells us that 6 or more cakes were sold for 20% of the days, so for 20 days, 6 or more cakes were sold. Then for 80 days, 1/2/3/4/5 cakes were sold.

With this information in mind, is the median number of cakes sold in one day less than 4?

We know how to get the median. When we arrange all figures in increasing order, the median will be the average of the 50th and the 51st terms. We need to know if the average of the 50th and 51st term is less than 4. Let’s tackle the statements one at a time:

*Statement 1: On 75% of the days that less than 6 cakes were sold, the number of cakes sold each day was less than 4.*

The number of days that less than 6 cakes were sold = 80. 75% of these 80 days will be 60 days. In 60 days, less than 4 cakes were sold. So the 50th and 51st terms will be less than 4 and so will their average. Hence, the median will be less than 4. This statement alone is sufficient.

*Statement 2: On 50% of the days that 4 or more cakes were sold, the number of cakes sold each day was 6 or more.*

In 20 days, 6 or more cakes were sold. This constitutes 50% of the days during which 4 or more cakes were sold, so in another 20 days, 4 or 5 cakes were sold. Hence, during the leftover 60 days, less than 4 cakes were sold. The 50th and 51st terms will be less than 4 and so will their average. Hence, the median will be less than 4. This statement alone is also sufficient, so our answer is D.

All we needed to worry about here were the 50th and 51st terms, however the whole problem changes when we talk about mean instead of median.

**Same Question on Mean:**

*At a bakery, cakes are sold every day for a certain number of days. If 6 or more cakes were sold for 20% of the total number of days, is the average number of cakes sold less than 4?*

*Statement 1: On 75% of the days that less than 6 cakes were sold, the number of cakes sold each day was less than 4.*

*Statement 2: On 50% of the days that 4 or more cakes were sold, the number of cakes sold each day was 6 or more.*

Again, the question stem tells us that 6 or more cakes were sold for 20% of the days, so for 20 days, 6 or more cakes were sold. Then for 80 days, 1/2/3/4/5 cakes were sold.

We now need to ask ourselves is the average number of cakes sold in one day less than 4?

This question asks us about the average. – that is far more complicated than the median. Every value matters when we talk about the average. We need to know the number of cakes sold on each of these 100 days to get the average.

6 or more cakes were sold in 20 days. Note that the number of cakes sold during these 20 days could be any number greater than 6, such as 20 or 50 or 120, etc. The minimum number of cakes sold on these 20 days would be 6*20 = 120. There is no limit to the maximum number of cakes sold.

With this in mind, let’s examine the statements:

In 80 days, less than 6 cakes were sold. Of this number, 75% is 60 days. In 60 days, less than 4 cakes were sold.

So in 60 days, you have a minimum of 1*60 = 60 cakes sold and a maximum of 3*60 = 180 cakes sold. During the leftover 20 days 4 or 5 cakes were sold, so you have a minimum of 4*20 = 80 cakes and a maximum of 5*20 = 100 cakes.

The minimum value of the average is (120 + 60 + 80)/ 100 = 2.6 cakes, but the maximum average could be anything. Therefore, this statement alone is not sufficient.

The 20 days when 6 or more cakes were sold make up 50% of the days when 4 or more cakes were sold. So for another 20 days, 4 or 5 cakes were sold. This gives us a minimum of 4*20 = 80 cakes and a maximum of 5*20 = 100 cakes. For 60 days, 1/2/3 cakes were sold. So in 60 days, you have minimum of 1*60 = 60 cakes sold and a maximum of 3*60 = 180 cakes sold.

The minimum value of the average is (120 + 60 + 80)/ 100 = 2.6 cakes, but again, the maximum average could be anything. This statement alone is also not sufficient.

Note that both statements give you the same information, so if they are not sufficient independently, they are not sufficient together. The answer of this modified question would be E.

Here, we had to assume the minimum and maximum value for each data point to get the range of the average – we couldn’t just rely on one or two data points. Finding the mean during a GMAT question requires much more information than finding the median!

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And, be sure to follow us on Facebook, YouTube, Google+, and Twitter!*

*Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the **GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Which is Worse to Encounter on a GMAT Question: Median or Mean? appeared first on Veritas Prep Blog.

]]>The post An Interesting Right Triangle Property You’ll Need to Know for the GMAT appeared first on Veritas Prep Blog.

]]>**Property: The circumcenter of a right triangle is the mid point of the hypotenuse.**

Let’s prove this first and then we will see its application.

Say, we have a right triangle ABC right angled at B. Let’s draw the perpendicular bisector of AB which intersects AB at its mid point M. Say this line intersects the hypotenuse AC at N. We need to prove that AN = CN. Note that triangle AMN and triangle ABC are similar triangles using the AA property (angle AMN = angle ABC = 90 degrees and angle A is common to both triangles). So the ratio of the sides of the two triangle is the same. Since MN is the perpendicular bisector of line AB, AM = MB which means that AM is half of AB.

So AM/AB = 1/2 = AN/AC

Hence AN = NC

So N is the mid point of AC.

Using the exact same logic for side BC, we will see that its perpendicular bisector also bisects the hypotenuse. So N would be the circumcenter of triangle ABC and the mid point of AC.

Using an official question, let’s see how this property can be useful to us:

*In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?*

*(A) (3,1)*

*(B) (1,3)*

*(C) (3,2)*

*(D) (2,2)*

*(E) (2,3)*

First, let’s see how we will solve this question without knowing this property and using co-ordinate geometry instead.

Method 1:

Points O and Q lie on the X axis and are 4 units apart. We need a point equidistant from both O and Q. All such points will lie on the line lying in the middle of O and Q and perpendicular to the X axis. The equation of such a line will be x = 2. The fire station should be somewhere on this line.

Points O and P lie on the Y axis and are 6 units apart. We need a point equidistant from both O and P. All such points will lie on the line lying in the middle of O and P and perpendicular to the Y axis. The equation of such a line will be y = 3. The fire station should be somewhere on this line too.

Any two lines on the XY plane intersect at most at one point (if they are not overlapping). Since the fire station must lie on both these lines, it must be on their intersection i.e. at (2, 3).

This point (2,3) will be equidistant from O, Q and P. Therefore, the answer is E.

Method 2:

Think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.

We know that the circumcenter lies on the mid point of the hypotenuse. The end points of the hypotenuse are (4, 0) and (0, 6). The mid point will be

x = (4 + 0)/2 = 2

y = (0 + 6)/2 = 3

As in Method 1, the point (2, 3) will be equidistant from all three points, O, P and Q. Again, the answer is E.

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post An Interesting Right Triangle Property You’ll Need to Know for the GMAT appeared first on Veritas Prep Blog.

]]>The post How to Use Ratios in GMAT Verbal Questions appeared first on Veritas Prep Blog.

]]>Here’s all we need to know:

- If the numerator increases and the denominator remains constant, the ratio will increase.
- If the denominator increases and the numerator remains constant, the ratio will decrease.

From this, we can also intuit that if the ratio doubled and the denominator remained constant, the numerator must have doubled. And if the ratio doubled and the numerator remained constant, the denominator must have been halved. Pretty simple, right? For whatever reason, these concepts tend not to produce any difficulty in the Quantitative section when test-takers are expecting them, but cause all sorts of problems when they crop up in Verbal questions. Let’s see an example.

*That the application of new technology can increase the productivity of existing coal mines is demonstrated by the case of Tribnia’s coal industry. Coal output per miner in Tribnia is double what it was five years ago, even though no new mines have opened. *

*Which of the following can be properly concluded from the statement about coal output per miner in the passage?*

*A) If the number of miners working in Tribnian coal mines has remained constant in the past five years, Tribnia’s total coal production has doubled in that period of time.*

* B) Any individual Tribnian coal mine that achieved an increase in overall output in the past five years has also experienced an increase in output per miner.*

* C) If any new coal mines had opened in Tribnia in the past five years, then the increase in output per miner would have been even greater than it actually was.*

* D) If any individual Tribnian coal mine has not increased its output per miner in the past five years, then that mine’s overall output has declined or remained constant.*

* E) In Tribnia the cost of producing a given quantity of coal has declined over the past five years. *

As soon as we see “per” we know we’re dealing with a ratio problem. In this case, we’re discussing coal output per miner. As a ratio, or fraction, this can be expressed as follows: Total Coal Output/Total Number of Miners. Further, we know that this ratio has doubled over the last five years. Employing the logic we used earlier, we now know that because the ratio doubled, if the number of miners (the denominator) remained constant, then the coal output (the numerator) doubled. And we also know that if the coal output (the numerator) remained constant, then the number of miners (the denominator) must have been halved. If we recognize this relationship, the correct answer is going to leap out at us.

- This is a restatement of the relationship we’ve already documented – namely that if the denominator remained constant, the numerator must have doubled. Clearly, we’ve got our answer. (But it’s still helpful to evaluate why all the wrong answer choices are incorrect, something you should be doing with every practice problem you attempt.)
- We can’t deduce what
*any*individual coal mine has achieved based on the output per worker of*all*the mines in aggregate. - Again, there’s no way to know what the productivity level of any mine might have been, let alone a hypothetical new one.
- If we understand how ratios work, we can see that this is not necessarily true. If the ratio has not increased, there are two possible explanations. First, the numerator has not increased. (This is what’s stated in the answer choice.) Second, the denominator has increased by more than the numerator has increased. Therefore we don’t know that output has declined or remained constant. It could be the case that the number of miners has gone up.
- This is out of scope. We don’t know what’s happened to the cost of producing coal.

The correct answer is A.

Takeaway: You see plenty of ratios in Critical Reasoning, so make sure you understand that when a ratio changes, it means that either the numerator or denominator (or both) has changed. If you treat these questions as simple Quant problems rather than as abstruse Verbal questions, you’re far less likely to be tripped up.

Plan on taking the GMAT soon? We have GMAT prep courses starting all the time. And, be sure to find us on Facebook, YouTube and Google+, and follow us on Twitter!

*By David Goldstein, a Veritas Prep GMAT instructor based in Boston. You can find more articles by him here.*

The post How to Use Ratios in GMAT Verbal Questions appeared first on Veritas Prep Blog.

]]>The post GMAT Prerequisites: What are the GMAT Requirements to Take the Test? appeared first on Veritas Prep Blog.

]]>**GMAT Requirements**

There are not a lot of GMAT prerequisites when it comes to specific types of education. For instance, a bachelor’s degree is not a GMAT requirement. However, the material you learn as a business major in undergraduate school can contribute to your performance on the GMAT. One GMAT requirement found on the official website is that anyone who is under 18 years old must have written permission from a parent or legal guardian to take the GMAT.

**Registering for the GMAT**

Among the basic GMAT requirements is, of course, registering for the test. Opening an account on the official GMAT website is the simplest way to register. You can schedule a test, cancel, reschedule, or find a testing center via your account. Finding a testing center near you is an easy task. All you do is enter your ZIP code, address, or city and state in the search bar. Your test center options will appear on the screen. If you have a documented disability, you can check into accommodations using your account. Another GMAT requirement is the scheduling fee, which is $250.

**What Is on the GMAT?**

The purpose of the GMAT is to determine whether you are a good candidate for business school. Of course, your GMAT score isn’t the only qualification considered by business schools, but in many cases, your score carries a lot of weight with admissions officials. The GMAT is made up of four sections: Integrated Reasoning, Quantitative, Verbal, and Analytical Writing. Questions in the Integrated Reasoning section test your ability to evaluate information delivered in the form of graphs, charts, tables, and more. Questions in the Quantitative section measure your arithmetic, geometry and algebra skills. Data analysis is also a part of the Quantitative section. The Verbal section features reading comprehension, sentence correction, and critical reasoning questions. The Analytical Writing section of the exam measures your ability to evaluate an argument while supplying solid evidence to support your points.

**How to Prepare for the GMAT**

Taking a practice test is a great place to start when preparing for the GMAT. At Veritas Prep, we provide you with the opportunity to take a free test to get an accurate picture of your skills before the GMAT. Your detailed test results reveal your strongest skills as well as the ones that need improvement. The GMAT curriculum at Veritas Prep thoroughly prepares you for each section on the exam. But instead of just presenting you with facts to memorize, our experienced instructors teach you how to apply what you know to solve problems. Questions on the GMAT gauge your ability to think like a businessperson.

**How Much Time Does it Take to Prepare for the Test?**

There is no hard and fast rule on how long you should take to prep for the GMAT. Some people spend one month studying for this test, while others dedicate several weeks to their preparations. After studying for a few weeks, you may want to take another practice test to gauge the progress you’ve made since you took your first practice GMAT. Your score on the second practice test can be an excellent indicator of whether you are ready to take the official exam. There is plenty of general advice concerning the test, but you have to make your own decision as to when you’re ready.

We are proud to offer first-rate GMAT tutoring at Veritas Prep. We’ve done the research and come up with a study program that has proven successful for our students time and again. Our study resources teach you how to think like the test-maker, and when you sign up with us, you’ll study with instructors who scored in the 99th percentile on the GMAT. In addition to that, they are expert teachers who know how to convey powerful lessons. You’ll have peace of mind knowing that you’re learning strategies and tips from the very best! Contact Veritas Prep today to achieve excellence on the GMAT.

The post GMAT Prerequisites: What are the GMAT Requirements to Take the Test? appeared first on Veritas Prep Blog.

]]>The post Tackling GMAT Critical Reasoning Boldface Questions appeared first on Veritas Prep Blog.

]]>We have often found that one strategy, which is very helpful in other question types too, helps sort out most questions of this type, though not in the same way. That strategy is – ‘find the conclusion(s)’

The conclusion of the argument is the position taken by the author.

Boldface questions (and others too) sometimes have more than one conclusion – One would be the conclusion of the argument i.e. the author’s conclusion. The argument could mention another conclusion which could be the conclusion of a certain segment of people/ some scientists/ some researchers/ a politician etc. We need to segregate these two and how each premise supports/opposes the various conclusion. Once this structure is in place, we automatically find the answer. Let’s see how with an example.

**Question:**** Recently, motorists have begun purchasing more and more fuel-efficient economy and hybrid cars that consume fewer gallons of gasoline per mile traveled. There has been debate as to whether we can conclude that these purchases will actually lead to an overall reduction in the total consumption of gasoline across all motorists.** The answer is no, since motorists with more fuel-efficient vehicles are likely to drive more total miles than they did before switching to a more fuel-efficient car, negating the gains from higher fuel-efficiency.

Which of the following best describes the roles of the portions in bold?

(A)The first describes a premise that is accepted as true; the second introduces a conclusion that is opposed by the argument as a whole.

(B)The first states a position taken by the argument; the second introduces a conclusion that is refuted by additional evidence.

(C)The first is evidence that has been used to support a position that the argument as a whole opposes; the second provides information to undermine the force of that evidence.

(D)The first is a conclusion that is later shown to be false; the second is the evidence by which that conclusion is proven false.

(E)The first is a premise that is later shown to be false; the second is a conclusion that is later shown to be false.

**Solution**: As our first step, let’s try to figure out the conclusion of the argument:

The author’s view is that “purchases of fuel efficient vehicles will NOT lead to an overall reduction in the total consumption of gasoline across all motorists.”

This is the position the argument (and author) takes.

The argument gives us another conclusion: these purchases will actually lead to an overall reduction in the total consumption of gasoline across all motorists.

Some people take this position (implied by the use of “there has been debate”)

This is our second bold statement. It introduces the opposing conclusion.

Let’s look at our options now.

(A) The first describes a premise that is accepted as true; the second introduces a conclusion that is opposed by the argument as a whole.

The first bold statement: Recently, motorists have begun purchasing more and more fuel-efficient economy and hybrid cars that consume fewer gallons of gasoline per mile traveled.

This is a premise and has been accepted as true. We know it has been accepted as true since the last line ends with – “…negating the gains from higher fuel-efficiency”

We have seen above that the second bold statement tells us about a conclusion that the argument opposes.

So (A) is correct. We have found our answer but let’s look at the other options too.

(B) The first states a position taken by the argument; the second introduces a conclusion that is refuted by additional evidence.

The first bold statement is a premise. It is not the position taken by the argument. Let’s move on.

(C) The first is evidence that has been used to support a position that the argument as a whole opposes; the second provides information to undermine the force of that evidence.

This option often confuses test-takers.

The evidence is – “Recently, motorists have begun purchasing more and more fuel-efficient economy and hybrid cars that consume fewer gallons of gasoline per mile traveled.”

That is, “the motorists have begun purchasing fuel efficient cars that give better mileage.”

The second bold statement does not undermine this evidence at all. In fact, it builds up on it with – “This brings up a debate on whether it will lead to overall decreased fuel consumption?”

Hence (C) is not correct.

(D)The first is a conclusion that is later shown to be false; the second is the evidence by which that conclusion is proven false.

The first bold statement is not a conclusion. So no point dwelling on this option.

(E)The first is a premise that is later shown to be false; the second is a conclusion that is later shown to be false.

The premise is taken to be true. The argument ends with “… the gains from higher fuel-efficiency”. Hence, this option doesn’t stand a chance either.

We hope you see how easy it is to break down the options once we identify the conclusion(s).

Keep practicing!

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Tackling GMAT Critical Reasoning Boldface Questions appeared first on Veritas Prep Blog.

]]>The post Quarter Wit, Quarter Wisdom: Dealing with Complex Word Problems appeared first on Veritas Prep Blog.

]]>*Twenty-four men can complete a job in sixteen days. Thirty-two women can complete the same job in twenty-four days. Sixteen men and sixteen women started working on the job for twelve days. How many more men must be added to complete the job in 2 days?*

*(A) 16*

* (B) 24*

* (C) 36*

* (D) 48*

* (E) 54*

Here, we are dealing with two groups of people: men and women. These two groups have different rates of completing a job. We are also told that a certain number of men and women do a part of the job, and we are asked to find the number of additional “men” required to finish the job in a shorter amount of time.

Recall that we have already come across questions where workers start some work and then more workers join in to complete the work before time.

The problem with this question is that we have two types of workers, not just one. So let’s try to simplify the question to a form that we know how to easily solve.

We’ll start by finding the relation between the rate of work done by men and the rate of work done by women. Let’s make the number of men and women the same to find the number of days it will take each group to complete 1 job.

Given: 24 men complete 1 job in 16 days

Given: 32 women complete 1 job in 24 days

So how many days will 24 women take to complete 1 work? (Why 24 women? Because we know how many days 24 men take)

We know how to solve this problem. (It has already been discussed in a past post).

32 women ……………. 1 work ………………. 24 days

24 women ……………. 1 work ………………. ?? days

No. of days taken = 24 * (32/24) = 32 days

Now this is what we have: 24 men take 16 days while 24 women take 32 days

So women take twice the time taken by men to do the same work (32 days vs 16 days). This means the rate of work of women is half the rate of work of men. This means 2 women are equivalent to 1 man i.e. 2 women will do the same work as 1 man does in the same time.

So now, let us replace all women by men so that we have only one type of worker.

Now this is our regular work rate question –

Given: 24 men complete the work in 16 days

Given: 16 men and 16 women work for 12 days

This means that we have 16 men and 8 men work for 12 days

which implies 24 men work for 12 days

We know that 24 men complete the work in 16 days. If they work for 12 days, there are 4 more days to go. But the work has to be completed in 2 days.

24 men …………… 4 days

?? men ……………. 2 days

No of men needed = 24 * (4/2) = 48

So we need 24 additional men to complete the work in 2 days.

Or looking at it another way, 24 men need 16 days to complete the work, so they need another 4 days to complete. But if we want them to complete the work in half the time (2 days), we will need twice the work force. So we need another 24 men.

Answer (B)

Basically, the question involved solving two smaller work-rate problems. Doesn’t seem daunting now, right?

**free online GMAT seminars** running all the time. And, be sure to follow us on **Facebook**, **YouTube**, **Google+**, and **Twitter**!

*GMAT** for Veritas Prep and regularly participates in content development projects such as this blog!*

The post Quarter Wit, Quarter Wisdom: Dealing with Complex Word Problems appeared first on Veritas Prep Blog.

]]>The post GMAT Tip of the Week Is Not A Player, It Just Crushes A Lot appeared first on Veritas Prep Blog.

]]>On a test-taker’s route to a strong section score, there lie a handful of questions that tempt you to devote several fruitless minutes playing around with equations, calculations, and techniques that aren’t working. A few questions later you look at the clock and realize that even though 90% of the problems have gone well for you, you’re several minutes off your target pace…all because of that one big punisher, the question you should have left alone.

Fortunately, Big Punisher has a mantra for you to keep in mind on test day:

“I’m not a player, I just crush a lot”

Meaning, of course, that you’re not the kind of test-taker who aimlessly plays around with the 3-4 “big punisher” questions that will ruin the time you have left for the others. You quickly identify that no one question is worth taking your whole pacing strategy on (as Snoop would say, “I’m too swift on my toes to get caught up with you hos,” hos, of course, being short for “horribly involved problems that I’ll probably get wrong anyway) and bank that time for the many other problems that you’ll crush…a lot.

Functionally that means this: when you realize that you’re more likely wasting time than progressing toward a right answer, cut your losses and move on so that you save the time for the problems that you will undoubtedly get right…as long as you have a reasonable amount of time for them. You might consider paying homage to Big Pun by using his name as a quick mnemonic for your strategic options:

**P**: Pick Numbers. If the calculations or algebra you’re performing seems to either be going in circles or getting worse, look back and see if you could simply pick numbers instead. This often works when you’re dealing with variables as parts of the answer choices.

**U**: Use Answer Choices. Again, if you feel like you’re running in circles, check and see if there are clues in the answer choices or if you can plug them in and backsolve directly.

**N**: Not Worth My Time. And if a quick assessment tells you that you can’t pick numbers or use answer choices, recognize that this problem simply isn’t worth your time, and blow in a guess. Remember: you’re not a player – you won’t let the test bait you into playing with a single crazy question for more than a minute without a direct path to the finish line – so save the time to focus on crushing a lot of problems that you know you can crush.

On your journey to completing entire GMAT sections on time, heed Big Pun’s warning: don’t stop (to play around with questions you already know you’re not getting right), get it, get it – meaning pick up the pace to have meaningful time to spend on the questions you can get. The biggest punisher of what should be high GMAT scores is poor time management, almost always caused by spending far too long on just a few problems. So remember: you’re not a player on those problems…go out there and crush a lot of the problems you know you can crush.

*Getting ready to take the GMAT? We have free online GMAT seminars running all the time. And as always, be sure to follow us on Facebook, YouTube, Google+ and Twitter!*

*By Brian Galvin.*

The post GMAT Tip of the Week Is Not A Player, It Just Crushes A Lot appeared first on Veritas Prep Blog.

]]>